Математические олимпиады школьников, Агаханов Н.X., Купцов Л.П., Нестеренко Ю.В., 1997.
Книга содержит задачи для девятиклассников, предлагавшиеся на заключительных этапах Всесоюзных математических олимпиад 1961 — 1992 гг., и является продолжением книги «Всероссийские математические олимпиады школьников» (авт. Г. Н. Яковлев и др.), вышедшей в издательстве «Просвещение» в 1992 г. Ко всем задачам даны ответы, указания к решению или задачи решены полностью. В книге много чертежей и рисунков.
математика
Математические олимпиады школьников, Агаханов Н.X., Купцов Л.П., Нестеренко Ю.В., 1997
Купить бумажную или электронную книгу и скачать и читать Математические олимпиады школьников, Агаханов Н.X., Купцов Л.П., Нестеренко Ю.В., 1997Кишиневские математические олимпиады, Рябухин Ю.М., Солтан В.П., Чиник Б.И., 1983
Кишиневские математические олимпиады, Рябухин Ю.М., Солтан В.П., Чиник Б.И., 1983.
Приведены задачи, предлагавшиеся на Кишиневских математических олимпиадах, а также их решения или указания к ним. Задачи 1973—1979 годов составлены или подобраны авторами сборника. Большинство из предложенных задач не требуют громоздких вычислений, хотя для их решения необходимо умение нестандартно мыслить. Краткость приведенных решений позволит читателю проявить свою фантазию.
Книга заинтересует широкий круг любителей математики. Она может служить пособием для математических кружков, участников олимпиад и абитуриентов.
Скачать и читать Кишиневские математические олимпиады, Рябухин Ю.М., Солтан В.П., Чиник Б.И., 1983Приведены задачи, предлагавшиеся на Кишиневских математических олимпиадах, а также их решения или указания к ним. Задачи 1973—1979 годов составлены или подобраны авторами сборника. Большинство из предложенных задач не требуют громоздких вычислений, хотя для их решения необходимо умение нестандартно мыслить. Краткость приведенных решений позволит читателю проявить свою фантазию.
Книга заинтересует широкий круг любителей математики. Она может служить пособием для математических кружков, участников олимпиад и абитуриентов.
Избранные задачи математических олимпиад, Васильев Н.Б., 1999
Избранные задачи математических олимпиад, Васильев Н.Б., 1999.
Популярная математика — это целая область человеческой культуры и Николай Борисович Васильев' был одним из тех людей, чей вклад в эту область был особенно значителен.
В процессе работы над сборником подготовительных задач к Московской городской олимпиаде 1994 года Николай Борисович сделал подборку избранных задач Московских олимпиад 30-х-60-х годов и черновик подборки за 70-е годы, что составляет основу первой части сборника. Подборка задач за 70-е годы пополнена мною (добавлены задачи, помеченные как дополнительные).
В второй части помещены задачи 80-х-90-х годов.
Скачать и читать Избранные задачи математических олимпиад, Васильев Н.Б., 1999Популярная математика — это целая область человеческой культуры и Николай Борисович Васильев' был одним из тех людей, чей вклад в эту область был особенно значителен.
В процессе работы над сборником подготовительных задач к Московской городской олимпиаде 1994 года Николай Борисович сделал подборку избранных задач Московских олимпиад 30-х-60-х годов и черновик подборки за 70-е годы, что составляет основу первой части сборника. Подборка задач за 70-е годы пополнена мною (добавлены задачи, помеченные как дополнительные).
В второй части помещены задачи 80-х-90-х годов.
Зарубежные математические олимпиады, Конягин С.В., Тоноян Г.А., Шарыгин И.Ф., 1987
Зарубежные математические олимпиады, Конягин С.В., Тоноян Г.А., Шарыгин И.Ф., 1987.
Книгу можно рассматривать как продолжение серии «Задачи и олимпиады», начатой издательством «Мир» в 1975 г.
В сборнике представлены наиболее интересные задачи национальных олимпиад 19 стран и ряда международных соревнований. Они разбиты на 7 глав по тематическому признаку. Все задачи (а их более 500) снабжены решениями.
Для учащихся старших классов, учителей, проводящих различные математические конкурсы, а также для всех любителей математики.
Скачать и читать Зарубежные математические олимпиады, Конягин С.В., Тоноян Г.А., Шарыгин И.Ф., 1987Книгу можно рассматривать как продолжение серии «Задачи и олимпиады», начатой издательством «Мир» в 1975 г.
В сборнике представлены наиболее интересные задачи национальных олимпиад 19 стран и ряда международных соревнований. Они разбиты на 7 глав по тематическому признаку. Все задачи (а их более 500) снабжены решениями.
Для учащихся старших классов, учителей, проводящих различные математические конкурсы, а также для всех любителей математики.
Заочные математические олимпиады, Васильев Н.Б., Гутенмахер В.Л., Раббот Ж.М., Тоом А.Л., 1981
Заочные математические олимпиады, Васильев Н.Б., Гутенмахер В.Л., Раббот Ж.М., Тоом А.Л., 1981.
Основу книги составляют задачи, предлагавшиеся на Всесоюзных заочных математических олимпиадах (1965—1970 гг.) и конкурсах Всесоюзной заочной математической школы (1964—1979 гг.) для учащихся 7—10 классов. Задачи разбиты на тематические циклы, за которыми следуют их решения, обсуждение и дополнительные вопросы для самостоятельного обдумывания.
Цель книги — научить читателя творчески относиться к решению каждой интересной задачи, показать ему, с какими другими математическими вопросами связана эта задача и какие общие закономерности лежат в основе ее решения.
Для школьников 7—10 классов, преподавателей, студентов.
Скачать и читать Заочные математические олимпиады, Васильев Н.Б., Гутенмахер В.Л., Раббот Ж.М., Тоом А.Л., 1981Основу книги составляют задачи, предлагавшиеся на Всесоюзных заочных математических олимпиадах (1965—1970 гг.) и конкурсах Всесоюзной заочной математической школы (1964—1979 гг.) для учащихся 7—10 классов. Задачи разбиты на тематические циклы, за которыми следуют их решения, обсуждение и дополнительные вопросы для самостоятельного обдумывания.
Цель книги — научить читателя творчески относиться к решению каждой интересной задачи, показать ему, с какими другими математическими вопросами связана эта задача и какие общие закономерности лежат в основе ее решения.
Для школьников 7—10 классов, преподавателей, студентов.
Задачи студенческих математических олимпиад, Садовничий В.А., Григорьян А.А., Конягин С.В., 1987
Задачи студенческих математических олимпиад, Садовничий В.А., Григорьян А.А., Конягин С.В., 1987.
В настоящем сборнике представлены задачи, предлагавшиеся на всех турах олимпиады «Студент и научно-технический прогресс»: задачи вузов, Московского тура олимпиады, зональных олимпиад (зона Поволжья), олимпиад РСФСР, и, наконец, задачи заключительных туров олимпиады по секции университетов 1981— 1983 гг., а также заключительного тура олимпиады 1974 г. (без разделения по секциям).
Скачать и читать Задачи студенческих математических олимпиад, Садовничий В.А., Григорьян А.А., Конягин С.В., 1987В настоящем сборнике представлены задачи, предлагавшиеся на всех турах олимпиады «Студент и научно-технический прогресс»: задачи вузов, Московского тура олимпиады, зональных олимпиад (зона Поволжья), олимпиад РСФСР, и, наконец, задачи заключительных туров олимпиады по секции университетов 1981— 1983 гг., а также заключительного тура олимпиады 1974 г. (без разделения по секциям).
Задачи Санкт-Петербургской олимпиады школьников по математике, Берлов С.Л., Иванов С.В., Кохась К.П., 1998
Задачи Санкт-Петербургской олимпиады школьников по математике, Берлов С.Л., Иванов С.В., Кохась К.П., 1998.
В этом году прошла 64-я городская олимпиада школьников по математике. Первый тур проходил 25 января, в нем приняло участие более 10 тысяч школьников Санкт-Петербурга. Победители первого тура, а также победители городской олимпиады прошлого года были приглашены на второй тур. Для 6-8 классов второй тур олимпиады проходил 15 февраля на математическом факультете РГПУ, для 9-11 классов - 1 марта на математико-механическом факультете СПбГУ. Наконец, 15 марта в помещении Физико-математического лицея №239 прошел отборочный тур, предназначенный для формирования команды города на Всероссийскую олимпиаду.
Скачать и читать Задачи Санкт-Петербургской олимпиады школьников по математике, Берлов С.Л., Иванов С.В., Кохась К.П., 1998В этом году прошла 64-я городская олимпиада школьников по математике. Первый тур проходил 25 января, в нем приняло участие более 10 тысяч школьников Санкт-Петербурга. Победители первого тура, а также победители городской олимпиады прошлого года были приглашены на второй тур. Для 6-8 классов второй тур олимпиады проходил 15 февраля на математическом факультете РГПУ, для 9-11 классов - 1 марта на математико-механическом факультете СПбГУ. Наконец, 15 марта в помещении Физико-математического лицея №239 прошел отборочный тур, предназначенный для формирования команды города на Всероссийскую олимпиаду.
Задачи отборочных математических олимпиад, Вавилов В.В., 1992
Задачи отборочных математических олимпиад, Вавилов В.В., 1992.
Данный сборник составлен из формулировок задач математических олимпиад, которые проводились в 1984-1992 г.г. для подготовки и тренировки советской команды школьников, успешно участвующей в Международных математических соревнованиях.
Задачи, предлагавшиеся на тренировочных олимпиадах являются, как правило, авторскими; кроме того, широко использовались журнальные материалы, задачи национальных олимпиад различных стран и материалы жюри Международных олимпиад.
Скачать и читать Задачи отборочных математических олимпиад, Вавилов В.В., 1992Данный сборник составлен из формулировок задач математических олимпиад, которые проводились в 1984-1992 г.г. для подготовки и тренировки советской команды школьников, успешно участвующей в Международных математических соревнованиях.
Задачи, предлагавшиеся на тренировочных олимпиадах являются, как правило, авторскими; кроме того, широко использовались журнальные материалы, задачи национальных олимпиад различных стран и материалы жюри Международных олимпиад.
Другие статьи...
- Задачи математических олимпиад для школьников, Гашков С.Б., 1986
- Задачи Всесоюзных математических олимпиад, Васильев Н.Б., Егоров А.А., 1988
- XYIII Всесоюзная математическая олимпиада, Задачи с решениями, Второй день, 1984
- LVIII Московская математическая олимпиада, Сборник подготовительных задач, Дориченко С.А., Ященко И.В., 1994
- LVIII Московская городская математическая олимпиада школьников, 1995
- 61 Московская математическая олимпиада, Анисов С.С., Ковальджи А.К., Спивак А.С., 1998
- Сборник задач с решениями для подготовки к студенческим математическим олимпиадам, Руденко А.К., Руденко М.Н., Семерич Ю.С., 2009
- Подготовка к решению олимпиадных задач по математике, Севрюков П.Ф., 2009
Показана страница 24 из 1493