Задачи математических олимпиад для школьников, Гашков С.Б., 1986.
Сборник адресован прежде всего школьникам старших классов, увлекающимся математикой. Он может быть использован также преподавателями математики для проведения олимпиад или факультативных занятий В сборник вошли задачи некоторых олимпиад 1985-86 учебного года, в организации которых большую роль сыграл механико-математический факультет Московского университета.
математика
Задачи математических олимпиад для школьников, Гашков С.Б., 1986
Скачать и читать Задачи математических олимпиад для школьников, Гашков С.Б., 1986Задачи Всесоюзных математических олимпиад, Васильев Н.Б., Егоров А.А., 1988
Задачи Всесоюзных математических олимпиад, Васильев Н.Б., Егоров А.А., 1988.
Содержит около 450 задач, предлагавшихся на заключительных турах математических олимпиад СССР, начиная с самых первых. Задачи размещены в хронологическом порядке и снабжены решениями. Многие из них являются своеобразными математическими исследованиями, позволяющими читателям ознакомиться с идеями и методами современной математики.
Для школьников старших классов, учителей и руководителей математических кружков.
Скачать и читать Задачи Всесоюзных математических олимпиад, Васильев Н.Б., Егоров А.А., 1988Содержит около 450 задач, предлагавшихся на заключительных турах математических олимпиад СССР, начиная с самых первых. Задачи размещены в хронологическом порядке и снабжены решениями. Многие из них являются своеобразными математическими исследованиями, позволяющими читателям ознакомиться с идеями и методами современной математики.
Для школьников старших классов, учителей и руководителей математических кружков.
XYIII Всесоюзная математическая олимпиада, Задачи с решениями, Второй день, 1984
XYIII Всесоюзная математическая олимпиада, Задачи с решениями, Второй день, 1984.
Фрагмент из книги.
Натуральное число назовем абсолютно простым, если оно простое и при любой перестановке его цифр снова получается простое число. Докажите, что абсолютно простое число не может содержать в своей записи более трех различных цифр.
Скачать и читать XYIII Всесоюзная математическая олимпиада, Задачи с решениями, Второй день, 1984Фрагмент из книги.
Натуральное число назовем абсолютно простым, если оно простое и при любой перестановке его цифр снова получается простое число. Докажите, что абсолютно простое число не может содержать в своей записи более трех различных цифр.
LVIII Московская математическая олимпиада, Сборник подготовительных задач, Дориченко С.А., Ященко И.В., 1994
LVIII Московская математическая олимпиада, Сборник подготовительных задач, Дориченко С.А., Ященко И.В., 1994.
В книге собраны различные задачи, используемые в течение ряда лет на занятиях математических кружков, а также задачи математических олимпиад для школьников 6-7 классов 1990-1994 годов. В сборнике также представлены наиболее интересные занятия кружков. Задачи сопровождаются указаниями и решениями.
Сборник предназначен для школьников 5-8 классов, которые делают первые шаги в увлекательный мир математики. Он принесет наибольшую пользу тем, кто прорешает его целиком, быть может, за исключением некоторых наиболее трудных задач (это реально).
Сборник может быть полезен учителям математики, руководителям математических кружков и всем любителям математики.
Скачать и читать LVIII Московская математическая олимпиада, Сборник подготовительных задач, Дориченко С.А., Ященко И.В., 1994В книге собраны различные задачи, используемые в течение ряда лет на занятиях математических кружков, а также задачи математических олимпиад для школьников 6-7 классов 1990-1994 годов. В сборнике также представлены наиболее интересные занятия кружков. Задачи сопровождаются указаниями и решениями.
Сборник предназначен для школьников 5-8 классов, которые делают первые шаги в увлекательный мир математики. Он принесет наибольшую пользу тем, кто прорешает его целиком, быть может, за исключением некоторых наиболее трудных задач (это реально).
Сборник может быть полезен учителям математики, руководителям математических кружков и всем любителям математики.
LVIII Московская городская математическая олимпиада школьников, 1995
LVIII Московская городская математическая олимпиада школьников, 1995.
Фрагмент из книги.
Несколько населённых пунктов соединены дорогами с городом, а между ними дорог нет. Автомобиль отправляется из города с грузами сразу для всех населённых пунктов. Стоимость каждой поездки равна произведению веса всех грузов в кузове на расстояние. Докажите, что если вес каждого груза численно равен расстоянию от города до пункта назначения, то общая стоимость перевозки не зависит от порядка, в котором объезжаются пункты.
Скачать и читать LVIII Московская городская математическая олимпиада школьников, 1995Фрагмент из книги.
Несколько населённых пунктов соединены дорогами с городом, а между ними дорог нет. Автомобиль отправляется из города с грузами сразу для всех населённых пунктов. Стоимость каждой поездки равна произведению веса всех грузов в кузове на расстояние. Докажите, что если вес каждого груза численно равен расстоянию от города до пункта назначения, то общая стоимость перевозки не зависит от порядка, в котором объезжаются пункты.
61 Московская математическая олимпиада, Анисов С.С., Ковальджи А.К., Спивак А.С., 1998
61 Московская математическая олимпиада, Анисов С.С., Ковальджи А.К., Спивак А.С., 1998.
Фрагмент из книги.
На глобусе проведены 17 параллелей и 24 меридиана. На сколько частей разделена поверхность глобуса? Меридиан — это дуга, соединяющая Северный полюс с Южным. Параллель — это окружность, параллельная экватору (экватор тоже является параллелью).
Скачать и читать 61 Московская математическая олимпиада, Анисов С.С., Ковальджи А.К., Спивак А.С., 1998Фрагмент из книги.
На глобусе проведены 17 параллелей и 24 меридиана. На сколько частей разделена поверхность глобуса? Меридиан — это дуга, соединяющая Северный полюс с Южным. Параллель — это окружность, параллельная экватору (экватор тоже является параллелью).
Сборник задач с решениями для подготовки к студенческим математическим олимпиадам, Руденко А.К., Руденко М.Н., Семерич Ю.С., 2009
Сборник задач с решениями для подготовки к студенческим математическим олимпиадам, Руденко А.К., Руденко М.Н., Семерич Ю.С., 2009.
Одним из средств повышения математической культуры будущих специалистов физико-математического и технического профиля в вузе является подготовка и участие студентов в математических олимпиадах. Студент при этом развивает привычку к точному логическому мышлению, получает творческие исследовательские навыки.
В пособии приводятся задачи, углубляющие теоретический материал. Есть задачи вычислительного характера. Задачи взяты из учебников, задачников, олимпиадных сборников.
Скачать и читать Сборник задач с решениями для подготовки к студенческим математическим олимпиадам, Руденко А.К., Руденко М.Н., Семерич Ю.С., 2009Одним из средств повышения математической культуры будущих специалистов физико-математического и технического профиля в вузе является подготовка и участие студентов в математических олимпиадах. Студент при этом развивает привычку к точному логическому мышлению, получает творческие исследовательские навыки.
В пособии приводятся задачи, углубляющие теоретический материал. Есть задачи вычислительного характера. Задачи взяты из учебников, задачников, олимпиадных сборников.
Подготовка к решению олимпиадных задач по математике, Севрюков П.Ф., 2009
Подготовка к решению олимпиадных задач по математике, Севрюков П.Ф., 2009.
Решение олимпиадных задач принципиально отличается от решения школьных, даже очень сложных, задач! Это обусловлено прежде всего выбором разделов, традиционно рассматриваемых на олимпиадах. Теория игр, графы, уравнения в целых числах и т. д. не рассматриваются в школьном курсе математики. Уже не говоря о принципе Дирихле, элементах теории чисел, четности, логических задачах. Олимпиадные задачи по геометрии и других «знакомых» разделов требуют нестандартного подхода. Автор, не разбирая сложные задачи, предлагает читателям на примере достаточно простых тренировочных задач познакомиться со стандартными подходами к анализу и решению самых распространенных типов задач.
Книга адресована как учащимся 5—7 классов, которые только учатся решению нестандартных задач олимпиадного типа, так и учащимся старших классов, которые отрабатывают навыки решения; учителям и родителям.
Скачать и читать Подготовка к решению олимпиадных задач по математике, Севрюков П.Ф., 2009Решение олимпиадных задач принципиально отличается от решения школьных, даже очень сложных, задач! Это обусловлено прежде всего выбором разделов, традиционно рассматриваемых на олимпиадах. Теория игр, графы, уравнения в целых числах и т. д. не рассматриваются в школьном курсе математики. Уже не говоря о принципе Дирихле, элементах теории чисел, четности, логических задачах. Олимпиадные задачи по геометрии и других «знакомых» разделов требуют нестандартного подхода. Автор, не разбирая сложные задачи, предлагает читателям на примере достаточно простых тренировочных задач познакомиться со стандартными подходами к анализу и решению самых распространенных типов задач.
Книга адресована как учащимся 5—7 классов, которые только учатся решению нестандартных задач олимпиадного типа, так и учащимся старших классов, которые отрабатывают навыки решения; учителям и родителям.
Другие статьи...
- Подготовка к математической олимпиаде, Начальная школа, 2-4 классы, Гейдман Б.П., Мишарина И.Э., 2007
- Олимпиадная математика, Задачи по теории графов с решениями и указаниями, 5-7 классы, Семендяева Н.Л., Федотов М.В., 2023
- Олимпиадная математика, Задачи на целые числа с решениями и указаниями, 5-7 классы, Семендяева Н.Л., Федотов М.В., 2020
- Олимпиадная математика, Арифметические задачи с решениями и указаниями, 5-7 классы, Золотарёва Н.Д., Федотов М.В., 2020
- Практические занятия по элементарной математике (2-й курс), Учебное пособие, Чулков П.В., 2012
- Олимпиадная математика, Элементы алгебры, комбинаторики и теории вероятностей, 5-7 классы, Золотарёва Н.Д., Федотов М.В., 2022
- Олимпиада Ломоносов по математике, Сергеев И.Н., 2008
- Математические олимпиады, Азиатско-Тихоокеанская, Шёлковый путь, Кунгожин А.М., Кунгожин М.А., Байсалов Е.Р., Елиусизов Д.А., 2017
Показана страница 25 из 1493