Данная книга посвящена задачам, аналогичным задаче 15 ЕГЭ по математике (решение уравнений и неравенств). Рассматриваются различные методы решения таких задач, в том числе и оригинальные. Книга необходима учащимся старших классов, учителям математики, репетиторам.
РАСКРЫТИЕ МОДУЛЕЙ В УРАВНЕНИЯХ И НЕРАВЕНСТВАХ
Если в уравнении или неравенстве модулей два или больше, мы поступаем следующим образом. Приравниваем все выражения, стоящие под знаком модуля, к нулю и полученные точки в нужном порядке расставляем на числовой прямой. Затем определяем знаки подмодульных выражений на каждом из образовавшихся промежутков и в соответствие с этими знаками раскрываем модули, т.е. данный модуль раскрывается на промежутке без изменения знака, если подмодульное выражение положительно, и с изменением знака, если оно отрицательно. Что касается концов промежутков, то поскольку подмодульное выражение там равно нулю, то модуль можно раскрыть любым из этих двух способов, т.е. общий конец двух промежутков можно включить в любой из них на свой выбор. Рассмотрим несколько примеров.
Оглавление.
ВВЕДЕНИЕ.
ГЛАВА 1.МЕТОД ИНТЕРВАЛОВ ДЛЯ РЕШЕНИЯ НЕРАВЕНСТВ.
Задачи для самостоятельного решения.
ГЛАВА 2.РАСКРЫТИЕ МОДУЛЕЙ В УРАВНЕНИЯХ И НЕРАВЕНСТВАХ.
Задачи для самостоятельного решения.
ГЛАВА 3.ИРРАЦИОНАЛЬНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА.
Задачи для самостоятельного решения.
ГЛАВА 4.ПОКАЗАТЕЛЬНЫЕ И ЛОГАРИФМИЧЕСКИЕ УРАВНЕНИЯ И НЕРАВЕНСТВА.
4.1.Основные формулы и решение простейших уравнений и неравенств.
4.2.Преобразование суммы и разности логарифмов.
Задачи для самостоятельного решения.
4.3.Метод замены переменной.
Задачи для самостоятельного решения.
4.4.Расщепление неравенств.
Задачи для самостоятельного решения.
4.5.Переход к новому основанию.
Задачи для самостоятельного решения.
ГЛАВА 5.УРАВНЕНИЯ И НЕРАВЕНСТВА.
СМЕШАННОГО ТИПА.
Задачи для самостоятельного решения.
ГЛАВА 6.ЛОГАРИФМИЧЕСКИЙ МЕТОД ИНТЕРВАЛОВ.
Задачи для самостоятельного решения.
ГЛАВА 7.СИСТЕМЫ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ И НЕРАВЕНСТВ.
Задачи для самостоятельного решения.
ОТВЕТЫ К ЗАДАЧАМ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ.
Купить .
По кнопкам выше и ниже «Купить бумажную книгу» и по ссылке «Купить» можно купить эту книгу с доставкой по всей России и похожие книги по самой лучшей цене в бумажном виде на сайтах официальных интернет магазинов Лабиринт, Озон, Буквоед, Читай-город, Литрес, My-shop, Book24, Books.ru.
По кнопке «Купить и скачать электронную книгу» можно купить эту книгу в электронном виде в официальном интернет магазине «ЛитРес», и потом ее скачать на сайте Литреса.
По кнопке «Найти похожие материалы на других сайтах» можно найти похожие материалы на других сайтах.
On the buttons above and below you can buy the book in official online stores Labirint, Ozon and others. Also you can search related and similar materials on other sites.
Хештеги: #ЕГЭ :: #2019 :: #11 класс :: #математика :: #Садовничий
Смотрите также учебники, книги и учебные материалы:
- ЕГЭ, математика, практикум по выполнению типовых тестовых заданий ЕГЭ, Учебно методическое пособие, Лаппо Л.Д., Попов М.А., 2006
- ЕГЭ 2006, математика, типовые тестовые задания, Корешкова Т.А., Глазков Ю.А., Мирошин В.В., Шевелева Н.В., 2006
- Математика, Реальные тесты и ответы, 2005
- ЕГЭ, тематический тренажёр, математика, профильный уровень, теория вероятностей и элементы статистики, Рязановский А.Р., Мухин Д.Г., 2019
- ЕГЭ 2019, 100 баллов, математика, профильный уровень, Задачи с параметром, Садовничий Ю.В., 2019
- Математика, решение заданий повышенного и высокого уровня сложности, Как получить максимальный балл на ЕГЭ, учебное пособие, Семенов А.В., Ященко И.В., Высоцкий И.Р., Трепалин А.С., Кукса Е.А., 2019
- ЕГЭ, математика, алгоритмы выполнения типовых заданий, Удалова Н.Н., Колесникова Т.А., Кудрец Д.А., 2018
- Математика, методические рекомендации по оцениванию выполнения заданий ЕГЭ с развернутым ответом, Высоцкий И.Р., Косухин О.Н., Семенов А.В., Трепалин А.С., 2019