Задачи и упражнения по функциональному анализу, более 1700 задач, учебное пособие, Крейна С.Г., Антоневич А.Б., Князев П.Н., Радыно Я.В., 2010

Задачи и упражнения по функциональному анализу, более 1700 задач, учебное пособие, Крейна С.Г., Антоневич А.Б., Князев П.Н., Радыно Я.В., 2010.

Настоящее учебное пособие представляет собой сборник задач и упражнений по функциональному анализу. Сборник состоит из одиннадцати глав, отражающих основные вопросы университетского курса функционального анализа. В начале каждой главы даны краткие теоретические сведения, затем — задачи и упражнения различной степени трудности. К задачам приведены ответы и указания. Определенное внимание в книге уделено так называемым контрпримерам — примерам, показывающим, что некоторые правдоподобные, на первый взгляд, утверждения неверны. Пособие предназначено для студентов математических специальностей; оно может быть использовано при изучении таких дисциплин анализа, как теория множеств, топология, теория обобщенных функций, теория интегральных уравнений.

Задачи и упражнения по функциональному анализу, более 1700 задач, учебное пособие, Крейна С.Г., Антоневич А.Б., Князев П.Н., Радыно Я.В., 2010



Предисловие.

В связи с интенсивным проникновением идей и методов функционального анализа в различные разделы математики (и не только математики) в последние годы в университетах курс функционального анализа значительно расширен. Существует ряд монографий и учебников, посвященных общему курсу функционального анализа, однако сборника задач, пригодного для проведения практических занятий, пока нет. Наличие большого числа задач, включенных в различные монографии, не решает этой проблемы. Настоящее пособие является попыткой восполнить имеющийся пробел.

Содержание.

Предисловие.
Глава 1. Теория множеств.
Глава 2. Топологические пространства.
Глава 3. Метрические пространства.
Глава 4. Топологические векторные пространства.
Глава 5. Линейные операторы в топологических векторных пространствах.
Глава 6. Нормированные векторные пространства.
Глава 7. Линейные операторы и функционалы в нормированных пространствах.
Глава 8. Уравнения с вполне непрерывными операторами в банаховых пространствах.
Глава 9. Теория интегрирования.
Глава 10. Гильбертово пространство.
Глава 11. Банаховы алгебры.
Литература.
Предметный указатель.



Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Задачи и упражнения по функциональному анализу, более 1700 задач, учебное пособие, Крейна С.Г., Антоневич А.Б., Князев П.Н., Радыно Я.В., 2010 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать djvu
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.Купить эту книгу



Скачать - djvu - Яндекс.Диск.
Дата публикации:





Хештеги: :: :: :: :: :: :: ::


Следующие учебники и книги:
Предыдущие статьи: