Курс высшей математики, интегральное исчисление, дифференциальные уравнения, векторный анализ, учебник для студентов втузов, Шестаков А.А., Малышева И.А., Полозков Д.П., 1987.
Учебник представляет собой второй том курса высшей математики и является продолжением книги Мантурова О В , Матвеева Н. М «Курс высшей математики Линейная алгебра Аналитическая геометрия Дифференциальное исчисление функций одной переменной» (М., 1986) Он предназначен для студентов-заочников инженерно-технических специальностей втузов и написан в соответствии с программой по математике для указанных специальностей Большое внимание уделено разбору примеров и задач. Имеются задачи для самостоятельного решения.
уравнение
Курс высшей математики, интегральное исчисление, дифференциальные уравнения, векторный анализ, учебник для студентов втузов, Шестаков А.А., Малышева И.А., Полозков Д.П., 1987
Скачать и читать Курс высшей математики, интегральное исчисление, дифференциальные уравнения, векторный анализ, учебник для студентов втузов, Шестаков А.А., Малышева И.А., Полозков Д.П., 1987Обыкновенные дифференциальные уравнения и методы их решения, ряды, элементы вариационного исчисления, Трухан А.А., Огородникова Т.В., 2019
Обыкновенные дифференциальные уравнения и методы их решения, ряды, элементы вариационного исчисления, Трухан А.А., Огородникова Т.В., 2019.
Учебное пособие содержит подробное изложение основных вопросов курсов «Обыкновенные дифференциальные уравнения», «Операционное исчисление», «Ряды» и «Вариационное исчисление», соответствующее требованиям к минимуму основной обязательной программы по подготовке дипломированных специалистов. Рассматриваются методы решения дифференциальных уравнений (ДУ) первого и второго порядков и, в частности, ДУ Эйлера. Теория проиллюстрирована вспомогательными рисунками и решением типовых примеров. Даны классические методы решения ДУ первого и второго порядков. Рассмотрены решения ДУ, заданных неявным образом. В пособии рассматриваются также способы получения особых решений ДУ в виде Р-дискриминантных и С-дискриминантных кривых. Большое внимание уделяется особым решениям ДУ, которые интерпретируются как кривые, огибающие семейство кривых обыкновенных решений. Рассмотрены вопросы устойчивости решений ДУ по Ляпунову.
Даны также приближенные методы решения ДУ с начальными и краевыми условиями, в том числе в прикладной программе MathCAD. Две лекции посвящены изложению операционного метода решения линейных ДУ и линейных систем ДУ с постоянными коэффициентами при начальных условиях, что находит широкое применение в экономических задачах и задачах механики, радиотехники и электротехники. Четыре лекции посвящены изложению теории рядов. Достаточно подробно дана теория числовых и функциональных рядов. Рассмотрены приложения теории функциональных рядов к приближенному решению ДУ. Даны элементы вариационного исчисления для получения экстремалей некоторых функционалов методом решения ДУ Эйлера. Кроме того, данное пособие снабжено большим набором индивидуальных заданий для самостоятельной работы студентов в виде практических занятий и домашних контрольных, что должно повысить интенсивность занятий и способствовать успешному усвоению студентами данного материала. Учебное пособие предназначено для студентов вузов всех форм обучения по направлениям подготовки, входящим в УГС: «Экономика и управление», «Техника и технология строительства», «Электроника, радиотехника и системы связи», «Фотоника, приборостроение, оптические и биотехнические системы и технологии», «Электро- и теплотехника», «Машиностроение», «Физико-технические науки и технологии», и другим инженерно-техническим направлениям подготовки и специальностям.
Купить бумажную или электронную книгу и скачать и читать Обыкновенные дифференциальные уравнения и методы их решения, ряды, элементы вариационного исчисления, Трухан А.А., Огородникова Т.В., 2019Учебное пособие содержит подробное изложение основных вопросов курсов «Обыкновенные дифференциальные уравнения», «Операционное исчисление», «Ряды» и «Вариационное исчисление», соответствующее требованиям к минимуму основной обязательной программы по подготовке дипломированных специалистов. Рассматриваются методы решения дифференциальных уравнений (ДУ) первого и второго порядков и, в частности, ДУ Эйлера. Теория проиллюстрирована вспомогательными рисунками и решением типовых примеров. Даны классические методы решения ДУ первого и второго порядков. Рассмотрены решения ДУ, заданных неявным образом. В пособии рассматриваются также способы получения особых решений ДУ в виде Р-дискриминантных и С-дискриминантных кривых. Большое внимание уделяется особым решениям ДУ, которые интерпретируются как кривые, огибающие семейство кривых обыкновенных решений. Рассмотрены вопросы устойчивости решений ДУ по Ляпунову.
Даны также приближенные методы решения ДУ с начальными и краевыми условиями, в том числе в прикладной программе MathCAD. Две лекции посвящены изложению операционного метода решения линейных ДУ и линейных систем ДУ с постоянными коэффициентами при начальных условиях, что находит широкое применение в экономических задачах и задачах механики, радиотехники и электротехники. Четыре лекции посвящены изложению теории рядов. Достаточно подробно дана теория числовых и функциональных рядов. Рассмотрены приложения теории функциональных рядов к приближенному решению ДУ. Даны элементы вариационного исчисления для получения экстремалей некоторых функционалов методом решения ДУ Эйлера. Кроме того, данное пособие снабжено большим набором индивидуальных заданий для самостоятельной работы студентов в виде практических занятий и домашних контрольных, что должно повысить интенсивность занятий и способствовать успешному усвоению студентами данного материала. Учебное пособие предназначено для студентов вузов всех форм обучения по направлениям подготовки, входящим в УГС: «Экономика и управление», «Техника и технология строительства», «Электроника, радиотехника и системы связи», «Фотоника, приборостроение, оптические и биотехнические системы и технологии», «Электро- и теплотехника», «Машиностроение», «Физико-технические науки и технологии», и другим инженерно-техническим направлениям подготовки и специальностям.
Уравнения математической физики, дополнительные главы, Карчевский М.М., Павлова М.Ф., 2016
Уравнения математической физики, дополнительные главы, Карчевский М.М., Павлова М.Ф., 2016.
Излагаются основные методы исследования обобщенных решений линейных и нелинейных краевых задач для уравнений эллиптического и параболического типов. Книга рассчитана на студентов старших курсов и аспирантов, специализирующихся в области математического моделирования и численных методов решения задач математической физики, а также научных сотрудников, чьи интересы лежат в указанной области.
Купить бумажную или электронную книгу и скачать и читать Уравнения математической физики, дополнительные главы, Карчевский М.М., Павлова М.Ф., 2016Излагаются основные методы исследования обобщенных решений линейных и нелинейных краевых задач для уравнений эллиптического и параболического типов. Книга рассчитана на студентов старших курсов и аспирантов, специализирующихся в области математического моделирования и численных методов решения задач математической физики, а также научных сотрудников, чьи интересы лежат в указанной области.
Анализ математических моделей, системы законов сохранения, уравнения Больцмана и Смолуховского, Галкин В.А., 2011
Анализ математических моделей, системы законов сохранения, уравнения Больцмана и Смолуховского, Галкин В.А., 2011.
Монография посвящена вопросам обоснования корректности задач для систем нелинейных уравнений, имеющих прикладное значение в математической физике. Содержание книги направлено на выявление и анализ основных математических структур, связанных с вопросами обоснования методов математического моделирования, приводящих к нелинейным системам законов сохранения, включающих в себя систему Навье—Стокса газовой динамики, уравнения Больцмана, Смолуховского, Власова в физической кинетике. Сюда же примыкают задача Стефана и модели тепломассолереноса, связанные с выращиванием кристаллов. Для специалистов в области прикладной математики, физической кинетики и газовой динамики, а также для студентов и аспирантов соответствующих специальностей.
Скачать и читать Анализ математических моделей, системы законов сохранения, уравнения Больцмана и Смолуховского, Галкин В.А., 2011Монография посвящена вопросам обоснования корректности задач для систем нелинейных уравнений, имеющих прикладное значение в математической физике. Содержание книги направлено на выявление и анализ основных математических структур, связанных с вопросами обоснования методов математического моделирования, приводящих к нелинейным системам законов сохранения, включающих в себя систему Навье—Стокса газовой динамики, уравнения Больцмана, Смолуховского, Власова в физической кинетике. Сюда же примыкают задача Стефана и модели тепломассолереноса, связанные с выращиванием кристаллов. Для специалистов в области прикладной математики, физической кинетики и газовой динамики, а также для студентов и аспирантов соответствующих специальностей.
Уравнения, Шахмейстер А.Х., 2011
Уравнения, Шахмейстер А.Х., 2011.
Данное пособие предназначено для углубленного изучения школьного курса математики, содержит большое количество разноуровневого тренировочного материала. В книге представлена программа для проведения элективных курсов в профильных и предпрофильных классах. Пособие адресовано широкому кругу учащихся, абитуриентов, студентов, преподавателей.
Скачать и читать Уравнения, Шахмейстер А.Х., 2011Данное пособие предназначено для углубленного изучения школьного курса математики, содержит большое количество разноуровневого тренировочного материала. В книге представлена программа для проведения элективных курсов в профильных и предпрофильных классах. Пособие адресовано широкому кругу учащихся, абитуриентов, студентов, преподавателей.
Уравнения математической физики, Захаров Е.В., Дмитриева И.В., Орлик С.И., 2010
Уравнения математической физики, Захаров Е.В., Дмитриева И.В., Орлик С.И., 2010.
В учебнике представлен материал для первоначального изучения уравнений математической физики: даны математические постановки задач для уравнений в частных производных (теплопроводности, Лапласа, волнового); приведены доказательства теорем единственности, существования и устойчивости их решений; описаны методы построения решений. Для студентов высших учебных заведений.
Скачать и читать Уравнения математической физики, Захаров Е.В., Дмитриева И.В., Орлик С.И., 2010В учебнике представлен материал для первоначального изучения уравнений математической физики: даны математические постановки задач для уравнений в частных производных (теплопроводности, Лапласа, волнового); приведены доказательства теорем единственности, существования и устойчивости их решений; описаны методы построения решений. Для студентов высших учебных заведений.
Разностный метод решения уравнений Максвелла, Головашкин Д.Л., Казанский Н.Л., 2007
Разностный метод решения уравнений Максвелла, Головашкин Д.Л., Казанский Н.Л., 2007.
В пособии представлены сведения, необходимые для ознакомления с разностным методом решения уравнений Максвелла. В частности, сформулированы явные разностные схемы Yee, способы наложения поглощающих слоев и задания падающей волны. Многочисленные примеры использования метода для решения задач дифракционной оптики иллюстрируют разностный подход к решению уравнений Максвелла. Настоящее учебное пособие предназначено для студентов, обучающихся по специальности 511600 - «Прикладные математика и физика». Может быть полезно и для студентов смежных специальностей. Разработано па кафедре технической кибернетики.
Скачать и читать Разностный метод решения уравнений Максвелла, Головашкин Д.Л., Казанский Н.Л., 2007В пособии представлены сведения, необходимые для ознакомления с разностным методом решения уравнений Максвелла. В частности, сформулированы явные разностные схемы Yee, способы наложения поглощающих слоев и задания падающей волны. Многочисленные примеры использования метода для решения задач дифракционной оптики иллюстрируют разностный подход к решению уравнений Максвелла. Настоящее учебное пособие предназначено для студентов, обучающихся по специальности 511600 - «Прикладные математика и физика». Может быть полезно и для студентов смежных специальностей. Разработано па кафедре технической кибернетики.
Уравнения математической физики, Тихонов А.Н., Самарский А.А., 1999
Уравнения математической физики, Тихонов А.Н., Самарский А.А., 1999.
В книге (5-е изд. 1977 г.) рассматриваются задачи математической финики, приводящие к уравнениям с частными производными. Расположение материала соответствует основным типам уравнений. Изучение каждого типа уравнений начинается с простейших физических задач, приводящих к уравнениям рассматриваемого типа. Особое внимание уделяется математической постановке задач, строгому изложению решения простейших задач и физической интерпретации результатов. В каждой главе помещены задачи и примеры. В 6-е издание добавлено Дополнение III, посвященное обобщенным решениям краевых задач. Кроме того, расширено Приложение III к гл. III: а также добавлен § 5 в Дополнение I, посвященный итерационным методам решения линейных уравнений. Для студентов технических специальностей вузов.
Скачать и читать Уравнения математической физики, Тихонов А.Н., Самарский А.А., 1999В книге (5-е изд. 1977 г.) рассматриваются задачи математической финики, приводящие к уравнениям с частными производными. Расположение материала соответствует основным типам уравнений. Изучение каждого типа уравнений начинается с простейших физических задач, приводящих к уравнениям рассматриваемого типа. Особое внимание уделяется математической постановке задач, строгому изложению решения простейших задач и физической интерпретации результатов. В каждой главе помещены задачи и примеры. В 6-е издание добавлено Дополнение III, посвященное обобщенным решениям краевых задач. Кроме того, расширено Приложение III к гл. III: а также добавлен § 5 в Дополнение I, посвященный итерационным методам решения линейных уравнений. Для студентов технических специальностей вузов.
Другие статьи...
- Математика, логарифмические уравнения и неравенства, Далингер В.А., 2019
- Задачи на составление уравнений, Лурье М.В., Александров В.И., 1990
- Точные решения уравнений Эйнштейна, Шмутцера Э., 1982
- Лекции об икосаэдре и решении уравнений пятой степени, Клейн Ф., 1989
- Быстро учимся решать уравнения, 1-4 класс, Узорова О.В., 2017
- Занимательная алгебра, корни и уравнения, Перельман Я.И., 2013
- Уравнения в частных производных, Треногий В.А., Недосекина И.С., 2013
- Занимательная алгебра, корни и уравнения, Перельман Я.И., 2013
Показана страница 2 из 6