Вероятность и статистика, Гринь А.Г., 2013.
Приводится формализованное изложение теории вероятностей и математической статистики. Используется соответствующий современным требованиям математический аппарат (теория меры, интеграл Лебега-Стилтьсса и пр.), но при этом серьезный акцепт делается па доступности изложения: много внимания уделяется объяснению смысла вводимых определений, доказываемых результатов. Теоретический материал сопровождается большим количеством примеров, которые могут быть использованы на практических занятиях.
Представляет собой изложение трехсеместрового курса «Теория вероятностей и математическая статистика». Для студентов, обучающихся по специальностям «Математика», «Прикладная математика», «Компьютерная безопасность» и др.
учебник по математике
Вероятность и статистика, Гринь А.Г., 2013
Скачать и читать Вероятность и статистика, Гринь А.Г., 2013Великая теорема Ферма, Арифметическое решение, Орлов П.М., 2009
Великая теорема Ферма, Арифметическое решение, Орлов П.М., 2009.
Размышления над решением равенства An=Xn+Yn в целых числах всегда выступали для автора в качестве своеобразного отдыха и вдохновения, поскольку были свободным полетом мысли. В научной литературе приходилось читать об алгебраическом доказательстве большой теоремы Ферма. Но это доказательство всегда было оторвано от теоремы Пифагора — «родной сестры» теоремы Ферма. Автору всегда хотелось найти общее решение равенства An=Xn+Yn в целых числах, где теорема Пифагора и большая теорема Ферма решались бы по единой методике. И такое арифметическое решение найти удалось.
Работа предназначается специалистам-математикам, преподавателям и студентам физико-математических вузов, а также любителям математики.
Скачать и читать Великая теорема Ферма, Арифметическое решение, Орлов П.М., 2009Размышления над решением равенства An=Xn+Yn в целых числах всегда выступали для автора в качестве своеобразного отдыха и вдохновения, поскольку были свободным полетом мысли. В научной литературе приходилось читать об алгебраическом доказательстве большой теоремы Ферма. Но это доказательство всегда было оторвано от теоремы Пифагора — «родной сестры» теоремы Ферма. Автору всегда хотелось найти общее решение равенства An=Xn+Yn в целых числах, где теорема Пифагора и большая теорема Ферма решались бы по единой методике. И такое арифметическое решение найти удалось.
Работа предназначается специалистам-математикам, преподавателям и студентам физико-математических вузов, а также любителям математики.
Векторное построение стереометрии, Рогановский Н.М., Столяр А.А., 1974
Векторное построение стереометрии, Рогановский Н.М., Столяр А.А., 1974.
Книга знакомит учителей с современным построением геометрии на основе идеи векторного Пространства. Она может служить пособием для факультативных Занятий, а также для учащихся, занимающихся в классах с углубленным изучением математики.
Скачать и читать Векторное построение стереометрии, Рогановский Н.М., Столяр А.А., 1974Книга знакомит учителей с современным построением геометрии на основе идеи векторного Пространства. Она может служить пособием для факультативных Занятий, а также для учащихся, занимающихся в классах с углубленным изучением математики.
О некоторых вопросах теории моментов, Ахиезер Н., Крейн М., 1938
О некоторых вопросах теории моментов, Ахиезер Н., Крейн М., 1938.
Предметом настоящей книги являются некоторые специальные вопросы, относящиеся к так называемой проблеме моментов, которые по тем или иным причинам попали в поле интересов авторов.
Книга разбита на отдельные статьи, которые в основном читаются независимо одна от другой; однако, не следует думать, что эти статьи не связаны между собой, наоборот, между ними есть тесная связь и статьи расположены в известной логической последовательности.
Скачать и читать О некоторых вопросах теории моментов, Ахиезер Н., Крейн М., 1938Предметом настоящей книги являются некоторые специальные вопросы, относящиеся к так называемой проблеме моментов, которые по тем или иным причинам попали в поле интересов авторов.
Книга разбита на отдельные статьи, которые в основном читаются независимо одна от другой; однако, не следует думать, что эти статьи не связаны между собой, наоборот, между ними есть тесная связь и статьи расположены в известной логической последовательности.
Теория игр, Оуэн Г., 1971
Теория игр, Оуэн Г., 1971.
Книга представляет собой краткое и сравнительно элементарное учебное пособие, пригодное как для первоначального, так и для углубленного изучения теории игр. Для ее чтения достаточно знания элементов математического анализа и теории вероятностей.
Книга естественно делится на две части, первая из которых посвящена играм двух лиц, а вторая — играм n лиц. Она охватывает большинство направлений теории игр, включая наиболее современные. В частности, рассмотрены антагонистические игры, игры двух лиц с ненулевой суммой и основы классической кооперативной теории. Часть материала в монографическом изложении появляется впервые. Каждая глава снабжена задачами разной степени сложности.
Книга вполне доступна студентам и аспирантам университетов, технических и экономических высших учебных заведений. Она представляет интерес не только для математиков, но и для специалистов в области исследования операций, военного дела, теории управления и математической экономики.
Скачать и читать Теория игр, Оуэн Г., 1971Книга представляет собой краткое и сравнительно элементарное учебное пособие, пригодное как для первоначального, так и для углубленного изучения теории игр. Для ее чтения достаточно знания элементов математического анализа и теории вероятностей.
Книга естественно делится на две части, первая из которых посвящена играм двух лиц, а вторая — играм n лиц. Она охватывает большинство направлений теории игр, включая наиболее современные. В частности, рассмотрены антагонистические игры, игры двух лиц с ненулевой суммой и основы классической кооперативной теории. Часть материала в монографическом изложении появляется впервые. Каждая глава снабжена задачами разной степени сложности.
Книга вполне доступна студентам и аспирантам университетов, технических и экономических высших учебных заведений. Она представляет интерес не только для математиков, но и для специалистов в области исследования операций, военного дела, теории управления и математической экономики.
Теория игр, Петросян Л.А., Зенкевич Н.А., Шевкопляс Е.В., 2012
Теория игр, Петросян Л.А., Зенкевич Н.А., Шевкопляс Е.В., 2012.
Учебник предназначен как для первоначального, так и для углубленного изучения теории игр. Проведено систематическое исследование математических моделей принятия решений несколькими сторонами в условиях конфликта. Представлено последовательное изложение единой теории статических и динамических игр. Рассмотрены все основные классы игр: конечные и бесконечные антагонистические игры, бескоалиционные и кооперативные игры, многошаговые и дифференциальные игры. Для закрепления материала в каждой главе содержатся задачи и упражнения разной степени сложности.
Во втором издании расширены разделы, касающиеся статической теории кооперативных решений и динамических кооперативных игр, а также игр с неполной информацией. Уточнены и изменены доказательства отдельных утверждений. Применен новый единый подход к исследованию оптимального поведения игроков в позиционных и дифференциальных играх.
Для студентов и аспирантов математических, экономических, управленческих и технических направлений и специальностей.
Купить бумажную или электронную книгу и скачать и читать Теория игр, Петросян Л.А., Зенкевич Н.А., Шевкопляс Е.В., 2012Учебник предназначен как для первоначального, так и для углубленного изучения теории игр. Проведено систематическое исследование математических моделей принятия решений несколькими сторонами в условиях конфликта. Представлено последовательное изложение единой теории статических и динамических игр. Рассмотрены все основные классы игр: конечные и бесконечные антагонистические игры, бескоалиционные и кооперативные игры, многошаговые и дифференциальные игры. Для закрепления материала в каждой главе содержатся задачи и упражнения разной степени сложности.
Во втором издании расширены разделы, касающиеся статической теории кооперативных решений и динамических кооперативных игр, а также игр с неполной информацией. Уточнены и изменены доказательства отдельных утверждений. Применен новый единый подход к исследованию оптимального поведения игроков в позиционных и дифференциальных играх.
Для студентов и аспирантов математических, экономических, управленческих и технических направлений и специальностей.
Теория графов, Алгоритмический подход, Кристофидес Н., 1978
Теория графов, Алгоритмический подход, Кристофидес Н., 1978.
В книге впервые в мировой литературе достаточно полно представлены разнообразные алгоритмы, связанные с нахождением структурных и числовых характеристик объектов из теории графов. В частности, подробно рассматриваются различные алгоритмы поиска решения в задаче коммивояжера. Кроме того, книга содержит большой фактический материал по исследованию потоков в сетях. Многочисленные примеры иллюстрируют работу конкретных алгоритмов. Приводятся оценки сложности соответствующих процедур. Разнообразная тематика и строгое представление алгоритмов сочетаются с доходчивостью изложения.
Книга будет интересна широкому кругу специалистов, сталкивающихся с теорией графов и ее приложениями. Она доступна студентам университетов и втузов соответствующих специальностей.
Скачать и читать Теория графов, Алгоритмический подход, Кристофидес Н., 1978В книге впервые в мировой литературе достаточно полно представлены разнообразные алгоритмы, связанные с нахождением структурных и числовых характеристик объектов из теории графов. В частности, подробно рассматриваются различные алгоритмы поиска решения в задаче коммивояжера. Кроме того, книга содержит большой фактический материал по исследованию потоков в сетях. Многочисленные примеры иллюстрируют работу конкретных алгоритмов. Приводятся оценки сложности соответствующих процедур. Разнообразная тематика и строгое представление алгоритмов сочетаются с доходчивостью изложения.
Книга будет интересна широкому кругу специалистов, сталкивающихся с теорией графов и ее приложениями. Она доступна студентам университетов и втузов соответствующих специальностей.
Функциональный анализ, Треногин В.А., 2002
Функциональный анализ, Треногин В.А., 2002.
Содержит изложение первоначальных основ функционального анализа и тех его направлений, которые непосредственно примыкают к прикладным задачам. Изложены: метод малого параметра, метод продолжения по параметру, приближенные (в частности, разностные) методы решения уравнений, метод Галеркина и метод конечных элементов (приближение сплайнами), элементы выпуклого анализа, метод монотонных операторов и другие вопросы.
Второе издание — 1993 г.
Для студентов вузов, обучающихся по специальностям «Математика» и «Прикладная математика», для преподавателей и лиц, интересующихся приложениями функционального анализа.
Скачать и читать Функциональный анализ, Треногин В.А., 2002Содержит изложение первоначальных основ функционального анализа и тех его направлений, которые непосредственно примыкают к прикладным задачам. Изложены: метод малого параметра, метод продолжения по параметру, приближенные (в частности, разностные) методы решения уравнений, метод Галеркина и метод конечных элементов (приближение сплайнами), элементы выпуклого анализа, метод монотонных операторов и другие вопросы.
Второе издание — 1993 г.
Для студентов вузов, обучающихся по специальностям «Математика» и «Прикладная математика», для преподавателей и лиц, интересующихся приложениями функционального анализа.
Другие статьи...
- Теория графов, Теория кодирования и блок схемы, Камерон П., Линт Д., 1980
- Суперанализ, Хренников А.Ю., 2005
- Оптимизация, Теория, Примеры, Задачи, Галеев Э.М., Тихомиров В.М., 2000
- Теория представлений групп, Наймарк М.А., 2010
- Вероятность, Мостеллер Ф., Рурке Р., Томас Дж., 2015
- Тензорный анализ сетей, Крон Г., 1978
- Основы теории чисел, Вейль А., 1967
- Основы теории игр, Учебное пособие, Колобашкина Л.В., 2021
Показана страница 5 из 477