топология

Топология, том 1, Куратовский К., 1966

Топология, Том 1, Куратовский К., 1966.

Монография известного ученого, вице-президента Академии наук Польской Народной Республики, академика Казимира Куратовского — выдающееся явление в математической литературе. Она представляет собой наиболее полное и легко читаемое сочинение, охватывающее большинство разделов современной топологии. Монография выдержала три издания на французском языке (третье издание — Варшава, 1961). Текст первого тома значительно переработан автором и подготовлен для одновременного издания на русском и английском языках. В настоящее время автор работает над рукописью второго тома. Книга заинтересует всех математиков, начиная от студентов и кончая специалистами, так как в последние годы топологические методы проникли почти во все отрасли математики.

Топология, Том 1, Куратовский К., 1966
Скачать и читать Топология, том 1, Куратовский К., 1966
 

Первые понятия топологии, Стинрод Н., Чинн У., 1967

Первые понятия топологии, Стинрод Н., Чинн У., 1967.

  Иногда говорят, что топология — это качественная геометрия, но в наши дни едва ли следует считать топологию лишь частью геометрии. Она представляет собой одни из наиболее бурно и интенсивно развивающихся разделов математики и все шире проникает в самые разнообразные области математических знаний. Все больше приложений находят топология и вне математики.
Эта книга посвящена основным и простейшим понятиям топологии. На примере двух важных теорем авторы показывают, как эти понятия возникают, как они позволяют правильно понять и точно сформулировать некоторые утверждения и как с помощью топологических методов эти утверждения можно доказать.
Кинга написана ясным языком, содержит много полезных упражнений, от читателя не требуется предварительных знаний по топологии, Книга, безусловно, заинтересует всех любителей математики начиная о учащихся старших классов средней школы.

Первые понятия топологии, Стинрод Н., Чинн У., 19678
Скачать и читать Первые понятия топологии, Стинрод Н., Чинн У., 1967
 

Мир математики, Деформируемые формы, Топология, том 36, Висенте Муньос, 2014

Мир математики, Деформируемые формы, Топология, Том 36, Висенте Муньос, 2014.

   В этой книге речь пойдет о топологии — разделе математики, который исследует явление непрерывности. Топологи изучают фигуры, которые можно деформировать и скручивать. Наверное, именно поэтому их в шутку называют «математиками, не способными отличить бублик от кофейной чашки». Топология — интересная и очень абстрактная дисциплина: в ней нет формул, уравнений, функций и даже чисел и букв! Но она близка к пространственной геометрии: оба эти раздела изучают формы. На страницах этой книги вы совершите небольшой экскурс в мир геометрии и топологии, а также узнаете много нового и неожиданного о форме нашей Вселенной.

Мир математики, Деформируемые формы, Топология, Том 36, Висенте Муньос, 2014
Скачать и читать Мир математики, Деформируемые формы, Топология, том 36, Висенте Муньос, 2014
 

Элементы комбинаторной и дифференциальной топологии, Прасолов В.В., 2004

Элементы комбинаторной и дифференциальной топологии, Прасолов В.В., 2004.

   Методы, используемые современной топологией, весьма разнообразны. В этой книге подробно рассматриваются методы комбинаторной топологии, которые заключаются в исследовании топологических пространств посредством их разбиений на какие-то элементарные множества, и методы дифференциальной топологии, которые заключаются в рассмотрении гладких многообразий и гладких отображений. Нередко одну и ту же топологическую задачу можно решить как комбинаторными методами, так и дифференциальными. В таких случаях обсуждаются оба подхода.
Одна из главных целей книги состоит в том, чтобы продвинуться в изучении свойств топологических пространств (и особенно многообразий) столь далеко, сколь это возможно без привлечения сложной техники. Этим она отличается от большинства книг по топологии.
Книга содержит много задач и упражнений. Почти все задачи снабжены подробными решениями.

Элементы комбинаторной и дифференциальной топологии, Прасолов В.В., 2004
Купить бумажную или электронную книгу и скачать и читать Элементы комбинаторной и дифференциальной топологии, Прасолов В.В., 2004
 

Курс геометрии, элементы топологии, дифференциальная геометрия, основания геометрии, Кузовлев В.П., Подаева Н.Г.,2012

Курс геометрии, элементы топологии, дифференциальная геометрия, основания геометрии, Кузовлев В. П., Подаева Н.Г., 2012.

Предлагаемое пособие примыкает по тематике к ряду известных учебников и рассчитано на российскую систему профессионального образования, на студентов математических специальностей педагогических вузов и университетов не ранее чем с третьего семестра обучения. Оно также может быть полезно аспирантам и преподавателям математики в средней школе и университете. При подготовке пособия основной целью было предложить изучающим геометрию студентам, аспирантам, преподавателям книгу, доступную для чтения, в которой они могли бы найти содержательные сведения об основных математических структурах, раскрывающие наиболее значимые аспекты последних с исторической точки зрения.

Курс геометрии, элементы топологии, дифференциальная геометрия, основания геометрии, Кузовлев В. П., Подаева Н.Г.,2012

Скачать и читать Курс геометрии, элементы топологии, дифференциальная геометрия, основания геометрии, Кузовлев В.П., Подаева Н.Г.,2012
 

Наглядная топология, Болтянский В.Г., Ефремович В.А., 1982

Наглядная топология, Болтянский В.Г., Ефремович В.А., 1982.

    Топология - сравнительно молодая математическая наука . Примерно за сто лет ее существования в ней достигнуты результаты, важные для многих разделов математики. Поэтому проникновение в "мир топологии " для начинающего несколько затруднительно, так как требует знания многих фактов геометрии, алгебры, анализа и других разделов математики, а также умения рассуждать.

    Книга написана просто и наглядно . В форме, доступной для понимания школьников, она знакомит читателя с идеями топологии , ее основными понятиями и фактами. Большое количество рисунков облегчает усвоение материала. Этому же способствуют свыше двухсот задач. Для школьников, преподавателей, студентов.

Наглядная топология, Болтянский В.Г., Ефремович В.А., 1982.


Скачать и читать Наглядная топология, Болтянский В.Г., Ефремович В.А., 1982
 

Что такое математика? - Курант Р., Роббинс Г.

Что такое математика? - Р. Курант, Г. Роббинс - 2000.

Что такое математика? - Р. Курант, Г. Роббинс

Книга призвана сократить разрыв между математикой, которая преподается в школе, и наиболее живыми и важными для естествознания и техники разделами современной математической науки. Начиная с элементарных понятий, читатель движется к важным областям современной науки. Книга написана доступным языком и является классикой популярного жанра в математике.

Книга предназначена для школьников, студентов, преподавателей, а также для всех интересующихся развитием математики и ее структурой.
Купить бумажную или электронную книгу и скачать и читать Что такое математика? - Курант Р., Роббинс Г.
 

Презентация - Теория систем и системное мышление

Презентация - Теория систем и системное мышление

TeorSistem

Теория систем – это лекарство, которое превратилось в болезнь.
                                                                                         Кен Уилбер
Скачать и читать Презентация - Теория систем и системное мышление
 
Показана страница 3 из 4




 

2025-12-05 23:43:06