топология

Введение в топологию, Лекционный курс, Сосинский А.Б., 2020

Введение в топологию, Лекционный курс, Сосинский А.Б., 2020.

   Книга основана на курсе топологии, который читался студентам первого и второго курса НМУ, а также американским студентам в рамках программы Math in Moscow. Первая часть — общее введение в топологию, с акцентом на маломерные геометрические объекты (графы, поверхности, кривые на плоскости, узлы) и их инварианты (эйлерова характеристика, степень отображения окружности, степень точки относительно кривой, фундаментальная группа). Вторая часть представляет собой введение в алгебраическую топологию, включающее гомотопические группы, клеточные, симплициальные и сингулярные гомологии, вместе с такой классикой, как двойственность Пуанкаре, теория препятствий, теоремы Гуревича, Хопфа—Уитни, Лефшеца, пространства Эйленберга—Маклейна, векторные расслоения.
Для студентов и преподавателей вузов.

Введение в топологию, Лекционный курс, Сосинский А.Б., 2020
Скачать и читать Введение в топологию, Лекционный курс, Сосинский А.Б., 2020
 

Введение в топологию, Борисович Ю.Г., Близняков Н.М., Израилевич Я.А., Фоменко Т.Н., 2015

Введение в топологию, Борисович Ю.Г., Близняков Н.М., Израилевич Я.А., Фоменко Т.Н., 2015.
 
   Вниманию читателей предлагается учебное пособие «Введение в топологию», признанное одним из лучших в России современных учебников по топологии.
В пособии содержатся первые понятия топологии, общая топология, теория гомотопий, дается классификация двумерных поверхностей, рассматриваются основы теории гладких многообразий и расслоений, элементы теории Морса, излагаются теории симплициальных, сингулярных и клеточных гомологий с приложениями к теории неподвижных точек.
Отличительной чертой книги является сочетание наглядности и строгости изложения. Она содержит большое количество рисунков и примеров, облегчающих самостоятельное изучение сложного материала. Для более активного усвоения материала в каждом параграфе читателю предлагаются многочисленные упражнения для самостоятельного решения.
Знакомство с книгой дает представление о современных задачах топологии как области математики, а также возможность использовать топологические методы в смежных отраслях.
По содержанию и стилю изложения пособие может быть поставлено в один ряд с лучшими российскими и мировыми учебниками по топологии.
В книге использованы иллюстрации академика РАН А. Т. Фоменко.
Пособие предназначено для студентов вузов, обучающихся по специальности «Математика», а также, как дополнительная литература, для студентов других специальностей. Оно может быть использовано преподавателями вузов при разработке обязательных курсов топологии, а также различных факультативных курсов, включающих топологические разделы.

Введение в топологию, Борисович Ю.Г., Близняков Н.М., Израилевич Я.А., Фоменко Т.Н., 2015
Купить бумажную или электронную книгу и скачать и читать Введение в топологию, Борисович Ю.Г., Близняков Н.М., Израилевич Я.А., Фоменко Т.Н., 2015
 

Лекции по алгебраической топологии, основы теории гомотопий, Постников М.М., 1984

Лекции по алгебраической топологии, основы теории гомотопий, Постников М.М., 1984.

Книга содержит подробное изложение теории гомотопий. Особое внимание в ней уделено разъяснению и происхождению основных понятий. Содержит обширный материал, в монографической и учебной литературе до сих пор не излагавшийся. Для студентов 3 — 5 курсов и аспирантов математических отделений университетов. Может служить основой спецкурсов и спецсеминаров.

Лекции по алгебраической топологии, основы теории гомотопий, Постников М.М., 1984

Скачать и читать Лекции по алгебраической топологии, основы теории гомотопий, Постников М.М., 1984
 

Топология для младшекурсников, Васильев В.А., 2014

Топология для младшекурсников, Васильев В.А., 2014.

   В книге одного из ведущих мировых топологов, академика РАН, профессора НИУ ВШЭ В. А. Васильева изложено введение в алгебраическую и дифференциальную топологию — фундаментальные разделы современной математики.
Учебник основан на курсе лекций, прочитанном автором студентам младших курсов Независимого московского университета.
Изложены классические понятия и методы топологии, необходимые специалисту и полезные для любого математика и грамотного физика: фундаментальная группа, накрытия и расслоения, многообразия и клеточные пространства, группы гомологий и когомологий, клеточные разбиения и гомологии классических многообразий, начала теории Морса, теоремы двойственности Пуанкаре и Александера, степень отображения, индексы пересечения и зацепления, индекс векторного поля, умножение в когомологиях.
Книга адресована студентам университетов и педагогических институтов.

Топология для младшекурсников, Васильев В.А., 2014
Скачать и читать Топология для младшекурсников, Васильев В.А., 2014
 

Алгебраическая топология с геометрической точки зрения, Скопенков А.Б., 2016

Алгебраическая топология с геометрической точки зрения, Скопенков А.Б., 2016.

В книге рассматриваются важнейшие наглядные объекты математики, важные для приложений: маломерные многообразия и векторные поля на них, непрерывные отображения и их  деформации. Показано, как при решении геометрических проблем естественно возникают основные идеи, понятия и методы алгебраической топологии: группы гомологий, препятствия  и инварианты, характеристические классы. Основные идеи представлены на простейших частных случаях, свободных от технических деталей, со сведением к необходимому минимуму  алгебраического языка. За счет этого книга доступна для начинающих, хотя содержит красивые сложные результаты. Для ее изучения желательно минимальное знакомство с графами,  векторными полями и поверхностями, хотя все необходимые определения приводятся в начале. Часть материала преподнесена в виде задач, к большинству из которых приведены  указания. Книга предназначена для студентов, аспирантов, работников науки и образования, изучающих и применяющих алгебраическую топологию.

Алгебраическая топология с геометрической точки зрения, Скопенков А.Б., 2016
Скачать и читать Алгебраическая топология с геометрической точки зрения, Скопенков А.Б., 2016
 

Основы общей топологии в задачах и упражнениях, Архангельский А.В., Пономарев В.И., 1974

Основы общей топологии в задачах и упражнениях, Архангельский А.В., Пономарев В.И., 1974.

Книга вводит читателя в область основных: понятий и методов общей топологии своеобразным путем, а именно посредством задач, которые предлагаются читателю в порядке возрастающей трудности. Никакой специальной подготовки книга не требует — она доступна студентам-математикам, начиная со второго курса. Книга является оригинальным по форме, но достаточно полным учебником общей топологии,, доводящим читателя до современных проблем этой области математики. Она будет полезна научным работникам, аспирантам, студентам, интересы которых так или иначе сталкиваются с общей топологией.

Основы общей топологии в задачах и упражнениях, Архангельский А.В., Пономарев В.И., 1974
Скачать и читать Основы общей топологии в задачах и упражнениях, Архангельский А.В., Пономарев В.И., 1974
 

Начальный курс топологии в листочках, задачи и теоремы, Вербицкий М.С., 2017

Начальный курс топологии в листочках, задачи и теоремы, Вербицкий М.С., 2017.

Книга написана по материалам лекций, прочитанных в Независимом московском университете и на факультете математики Высшей школы экономики, и состоит из записок лекций и упражнений, предлагавшихся студентам. В курс включены результаты общей топологии, широко применяемые в анализе и геометрии. Для удобства читателя приводятся необходимые понятия и результаты теории категорий и теории множеств. Книга заканчивается начальными главами гомотопической топологии (накрытия, фундаментальная группа). Теоретический материал курса изложен как в лекциях, так и в упражнениях, которые можно изучать независимо от лекций.

Начальный курс топологии в листочках, задачи и теоремы, Вербицкий М.С., 2017

Купить бумажную или электронную книгу и скачать и читать Начальный курс топологии в листочках, задачи и теоремы, Вербицкий М.С., 2017
 

Топология, том 2, Куратовский К., 1969

Топология, Том 2, Куратовский К., 1969.

Монография известного ученого, вице-президента Академии наук Польской Народной Республики, иностранного члена ЛИ СССР Казимира Куратовского — выдающееся явление и математической литературе. Она представляет собой наиболее полное и легко читаемое сочиненно, охватывающее большинство разделов современной общей топологии. Монография выдержала три издания на французском языке. В последние годы текст книги был значительно переработан автором. Книга заинтересует всех математиков, начиная от студентов н кончая специалистами, так как топологические методы в настоящее время широко проникли почти во все отрасли математики.

Топология, Том 2, Куратовский К., 1969
Скачать и читать Топология, том 2, Куратовский К., 1969
 
Показана страница 2 из 4




 

2025-12-05 21:37:33