Python

Прикладное машинное обучение без учителя с использованием Python, Пател А., 2020

Прикладное машинное обучение без учителя с использованием Python, Пател А., 2020.
 
Эта книга рассчитана на читателей двух категорий. Первая, ощутимо боль­шая, категория — это специалисты по анализу и обработке данных, которым по долгу службы приходится работать с временными рядами, но делают они это не очень часто. Это могут быть как ветераны отрасли, так и начинающие ана­литики. Опытным специалистам материал первых глав покажется знакомым, но это не значит, что им можно пренебречь, — здесь описаны самые современные методы обработки данных и рассмотрены важные особенности управления вре­менными рядами. Аналитикам с небольшим рабочим опытом желательно прора­ботать все без исключения главы книги предельно внимательно, несмотря на их тематическую независимость друг от друга. Вторая категория читателей — руководители отделов по обработке и анализу данных в компаниях с интенсивным внутренним сбором информации. Если вы относитесь к этой группе читателей, то должны быть в курсе технологических решений, применяемых для обработки временных рядов, хотя вам и не прихо­дится заниматься программированием самостоятельно. Для вас эта книга будет полезна тем, что обозначит область применения временных рядов в существую­щих или создаваемых заново алгоритмах сбора и анализа данных. Назначение этой книги — помочь вам разобраться в технологиях, призванных упростить об­ работку существующих ресурсов данных.

Прикладное машинное обучение без учителя с использованием Python, Пател А., 2020
Скачать и читать Прикладное машинное обучение без учителя с использованием Python, Пател А., 2020
 

Основы искусственного интеллекта, Нетехническое введение, Таулли Т., 2021

Основы искусственного интеллекта, Нетехническое введение, Таулли Т., 2021.
 
Книга представляет собой увлекательное, нетехническое введение в такие важные понятия искусственного интеллекта (ИИ), как машинное обучение, глубокое обучение, обработка естественного языка, робототехника и многое другое. Проведено знакомство с историей и основными понятиями ИИ. Раскрыто значение данных как "топлива" для ИИ. Рассмотрены традиционные и продвинутые статистические методы машинного обучения, алгоритмы нейронных сетей для глубокого обучения, сферы применения разговорных роботов (чат-ботов), методы роботизации производственных процессов, технологии обработки естественного языка. Рассказано о применении языка Python и платформ TensorFlow и PyTorch при внедрении проектов ИИ. Освещены современные тренды ИИ: автономное вождение, милитаризация, технологическая безработица, изыскание новых лекарственных препаратов и другие.

Основы искусственного интеллекта, Нетехническое введение, Таулли Т., 2021
Купить бумажную или электронную книгу и скачать и читать Основы искусственного интеллекта, Нетехническое введение, Таулли Т., 2021
 

Основы искусственного интеллекта в примерах на Python, Самоучитель, Постолит А.В., 2024

Основы искусственного интеллекта в примерах на Python, Самоучитель, Постолит А.В., 2024.
 
Описаны инструментальные средства для разработки приложений искусствен­ного интеллекта. Даны основы языка программирования Python. Раскрыты основ­ные понятия и определения искусственного интеллекта. Рассмотрены вопросы программной реализации элементов нейронной сети и построения многослойных нейронных сетей. Большое внимание уделено применению специализированных библиотек PyBrain, Scikit-leam, Keras, TensorFlow для формирования структуры нейронных сетей и их обучения, и библиотек ImageAI и OpenCV для обработки изображений. Материал иллюстрирован простыми и понятными примерами, де­монстрирующими использование предварительно обученных нейронных сетей для распознавания объектов на изображениях, создания собственных наборов данных, формирования структуры сети, ее обучения и практического применения. Во 2-м издании обновлены программные коды и версии библиотек, улучшены рисунки, учтены пожелания читателей и исправлены ошибки. Электронное приложение-архив, доступное на сайте издательства, содержит листинги описанных в книге примеров.

Основы искусственного интеллекта в примерах на Python, Самоучитель, Постолит А.В., 2024.   Описаны инструментальные средства для разработки приложений искусствен­ного интеллекта. Даны основы языка программирования Python. Раскрыты основ­ные понятия и определения искусственного интеллекта. Рассмотрены вопросы программной реализации элементов нейронной сети и построения многослойных нейронных сетей. Большое внимание уделено применению специализированных библиотек PyBrain, Scikit-leam, Keras, TensorFlow для формирования структуры нейронных сетей и их обучения, и библиотек ImageAI и OpenCV для обработки изображений. Материал иллюстрирован простыми и понятными примерами, де­монстрирующими использование предварительно обученных нейронных сетей для распознавания объектов на изображениях, создания собственных наборов данных, формирования структуры сети, ее обучения и практического применения. Во 2-м издании обновлены программные коды и версии библиотек, улучшены рисунки, учтены пожелания читателей и исправлены ошибки. Электронное приложение-архив, доступное на сайте издательства, содержит листинги описанных в книге примеров.
Купить бумажную или электронную книгу и скачать и читать Основы искусственного интеллекта в примерах на Python, Самоучитель, Постолит А.В., 2024
 

Основы Python для Data Science, Кеннеди Б., 2023

Основы Python для Data Science, Кеннеди Б., 2023.
 
Python — язык программирования № 1 для машинного обучения и Data Science. Но как же сложно решить, с чего начать изучение Python, ведь у него огромный инструментарий! Кеннеди Берман фокусируется на тех навыках программирования, которые понадобятся вам для решения задач в области Data Science и машинного обучения. Вы познакомитесь с блокнотами Jupyter — лучшей средой для профессиональной работы с данными. После этого перейдете к ключевым библиотекам, которые упрощают процесс математических вычислений, визуализации, решение задач машинного обучения и обработки естественного языка. После этого, овладев основами, вы перейдете к продвинутым техникам, позволяющим решать более сложные задачи.

Основы Python для Data Science, Кеннеди Б., 2023
Купить бумажную или электронную книгу и скачать и читать Основы Python для Data Science, Кеннеди Б., 2023
 

Классические задачи Computer Science на языке Python, Копец Д., 2020

Классические задачи Computer Science на языке Python, Копец Д., 2020.
 
Многие задачи в области Computer Science, которые на первый взгляд кажутся новыми или уникальными, на самом деле уходят корнями в классические алгоритмы, методы кодирования и принципы разработки. И устоявшиеся техники по-прежнему остаются лучшим способом решения таких задач! Научитесь писать оптимальный код для веб-разработки, обработки данных, машинного обучения и других актуальных сфер применения Python. Книга даст вам возможность глубже освоить язык Python, проверить себя на испытанных временем задачах, упражнениях и алгоритмах. Вам предстоит решать десятки заданий по программированию: от самых простых (например, найти элементы списка с помощью двоичной сортировки), до сложных (выполнить кластеризацию данных методом k-средних). Прорабатывая примеры, посвященные поиску, кластеризации, графам и пр., вы вспомните то, о чем успели позабыть, и овладеете классическими приемами решения повседневных задач.

Классические задачи Computer Science на языке Python, Копец Д., 2020
Купить бумажную или электронную книгу и скачать и читать Классические задачи Computer Science на языке Python, Копец Д., 2020
 

Грокаем машинное обучение, Серрано Л., 2024

Грокаем машинное обучение, Серрано Л., 2024.
 
Машинное обучение — это набор методов анализа данных, основанных на алгоритмах, которые дают все более точные результаты по мере поступления новых данных. Машинное обучение лежит в основе систем рекомендаций, программ распознавания лиц, «умных» колонок и даже беспилотных автомобилей. Эта уникальная книга объясняет основные понятия машинного обучения на простых и доступных примерах, увлекательных упражнениях и запоминающихся иллюстрациях. Здесь нет зубодробительного академического жаргона, для понимания объяснений достаточно знаний основ алгебры. По мере чтения вы будете создавать модели для идентификации спама и распознавания изображений и другие интересные проекты на языке Python. Откройте для себя мощные методы машинного обучения, для понимания и применения которых достаточно знаний математики на уровне средней школы! Для читателей, знающих основы языка Python. Знаний в области машинного обучения не требуется.

Грокаем машинное обучение, Серрано Л., 2024
Купить бумажную или электронную книгу и скачать и читать Грокаем машинное обучение, Серрано Л., 2024
 

Грокаем глубокое обучение, Траск Э., 2020

Грокаем глубокое обучение, Траск Э., 2020.
 
Глубокое обучение — это раздел искусственного интеллекта, цель которого научить компьютеры обучаться с помощью нейронных сетей — технологии, созданной по образу и подобию человеческого мозга. Онлайн-переводчики, беспилотные автомобили, рекомендации по выбору товаров именно для вас и виртуальные голосовые помощники — вот лишь несколько достижений, которые стали возможны благодаря глубокому обучению. «Грокаем глубокое обучение» научит конструировать нейронные сети с нуля! Эндрю Траск знакомит со всеми деталями и тонкостями этой нелегкой задачи. Python и библиотека NumPy способны научить ваши нейронные сети видеть и распознавать изображения, переводить любые тексты на все языки мира и даже писать не хуже Шекспира!

Грокаем глубокое обучение, Траск Э., 2020
Купить бумажную или электронную книгу и скачать и читать Грокаем глубокое обучение, Траск Э., 2020
 

Грокаем глубокое обучение с подкреплением, Моралес М., 2023

Грокаем глубокое обучение с подкреплением, Моралес М., 2023.
 
Мы учимся, взаимодействуя с окружающей средой, и получаемые вознаграждения и наказания определяют наше поведение в будущем. Глубокое обучение с подкреплением привносит этот естественный процесс в искусственный интеллект и предполагает анализ результатов для выявления наиболее эффективных путей движения вперед. Агенты глубокого обучения с подкреплением могут способствовать успеху маркетинговых кампаний, прогнозировать рост акций и побеждать гроссмейстеров в Го и шахматах. Давайте научимся создавать системы глубокого обучения на примере увлекательных упражнений, сопровождаемых кодом на Python с подробными комментариями и понятными объяснениями. Вы увидите, как работают алгоритмы, и научитесь создавать собственных агентов глубокого обучения с подкреплением, используя оценочную обратную связь.

Грокаем глубокое обучение с подкреплением, Моралес М., 2023
Купить бумажную или электронную книгу и скачать и читать Грокаем глубокое обучение с подкреплением, Моралес М., 2023
 
Показана страница 15 из 22




 

2026-02-03 20:00:51