Геометрия, 9 класс, Ершова А.П., Голобородько В.В., Крижановский А.Ф., Ершов С.В., 2017

Геометрия, 9 класс, Ершова А.П., Голобородько В.В., Крижановский А.Ф., Ершов С.В., 2017.
 
   В этом учебном году завершается изучение планиметрии — геометрии на плоскости. Прежде чем приступить к занятиям, повторите основные понятия и теоремы, которые изучались в 7-8 классах. Все они известны со времен Древней Греции и относятся к элементарной (евклидовой) геометрии. В 9 классе вы ознакомитесь с геометрическими методами, которые были открыты значительно позже, в XIV-XX вв., — координатным, векторным и методом геометрических преобразований. Эти методы широко применяются в технике и естественных науках, прежде всего в физике. Их изучение поможет вам лучше понять некоторые физические законы. В сущности, геометрию 9 класса можно без преувеличения назвать геометрией методов.
С помощью этого учебника вы научитесь решать любые, а не только прямоугольные, треугольники, расширите представление о фигурах на плоскости, усовершенствуете логическое мышление, а также узнаете о жизни и достижениях выдающихся ученых прошлого. Практически в каждом параграфе вам предлагается доказать математическое утверждение, привести пример, провести аналогию, то есть двигаться вперед самостоятельно.

Геометрия, 9 класс, Ершова А.П., Голобородько В.В., Крижановский А.Ф., Ершов С.В., 2017


Прямоугольная система координат на плоскости (повторение).
Напомним, что для введения системы координат на плоскости необходимо через произвольную точку О провести две взаимно перпендикулярные прямые Ох и Оу, выбрать на каждой из них направление (его обозначают стрелкой) и единичный отрезок (рис. 27).

Точку О называют началом координат, плоскость, на которой проведены прямые, — координатной плоскостью, а сами прямые Ох и Оу — координатными осями (или осями координат). Начало координат делит каждую из осей на две полуоси: положительную (на ней обозначается стрелка) и отрицательную.

Содержание.
Предисловие.
Глава I. РЕШЕНИЕ ТРЕУГОЛЬНИКОВ.
§1. Тригонометрические функции углов от 0° до 180°
§2. Теорема косинусов и следствия из нее.
§3. Теорема синусов и следствия из нее.
§4. Решение треугольников.
§5. Применение тригонометрических функций к нахождению площадей.
Итоги главы I.
Историческая справка.
Математические олимпиады. Украинские математические олимпиады школьников.
Готовимся к ГИА. Тест 1.
Глава II. КООРДИНАТЫ НА ПЛОСКОСТИ.
§6. Простейшие задачи в координатах.
§7. Уравнения окружности и прямой.
§8. Метод координат.
Итоги главы II.
Математические олимпиады. М.И. Ядренко.
Готовимся к ГИА. Тест 2.
Глава III. ГЕОМЕТРИЧЕСКИЕ ПРЕОБРАЗОВАНИЯ.
§9. Движение.
§10. Центральная и осевая симметрии.
§11. Поворот и параллельный перенос.
§12. Подобие фигур.
Для тех, кто хочет знать больше.
§13. Метод геометрических преобразований.
Итоги главы III.
Историческая справка.
Математические олимпиады. В.Н. Лейфура.
Готовимся к ГИА. Тест 3.
Глава IV. ВЕКТОРЫ НА ПЛОСКОСТИ.
§14. Начальные сведения о векторах.
§15. Сложение и вычитание векторов.
§16. Умножение вектора на число. Скалярное произведение векторов.
Для тех, кто хочет знать больше.
§17. Векторный метод.
Итоги главы IV.
Историческая справка.
Математические олимпиады. В.А. Ясинский.
Готовимся к ГИА. Тест 4.
Глава V. ПРАВИЛЬНЫЕ МНОГОУГОЛЬНИКИ. ДЛИНА ОКРУЖНОСТИ. ПЛОЩАДЬ КРУГА.
§18. Вписанная и описанная окружности правильного многоугольника.
§19. Длина окружности и площадь круга.
Итоги главы V.
Историческая справка.
Математические олимпиады. Международные олимпиады для школьников.
Готовимся к ГИА.
Тест 5.
Задачи на повторение курса геометрии 7-9 классов.
Для тех, кто хочет знать больше Приложения.
Приложение 1. Параллельный перенос в декартовой системе координат.
Приложение 2. Наложение, движение, подобие.
Приложение 3. Длина окружности и площадь круга.
Справочные материалы.
Таблица значений тригонометрических функций.
Таблица квадратов натуральных чисел от 1 до 99.
Темы учебных проектов.
Ответы и указания.
Предметный указатель.



Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Геометрия, 9 класс, Ершова А.П., Голобородько В.В., Крижановский А.Ф., Ершов С.В., 2017 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать pdf
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.Купить эту книгу



Скачать - pdf - Яндекс.Диск.
Дата публикации:





Хештеги: :: :: :: :: :: ::


Следующие учебники и книги:
Предыдущие статьи: