Справочник содержит практически все разделы аппарата современной математики, которые используются в инженерном деле, такие как алгебра, геометрия, тригонометрия, теория матриц и детерминантов, булева алгебра и логические схемы, дифференциальное и интегральное исчисление, статистика и теория вероятностей, и т. д. Основные положения теории иллюстрируются многочисленными практическими примерами и задачами.
Будет полезен инженерно-техническим работникам, студентам и абитуриентам технических вузов и колледжей.
Арифметические действия.
Числа вида 3, 5, 72, используемые для счета предметов или для указания порядкового номера того или иного предмета среди однородных предметов, называют натуральными. Натуральные числа 3, 5, 72 называют также положительными целыми числами. Числа -13, -6, -5, противоположные натуральным, называют отрицательными целыми числами. Число 0 также считается целым числом. Итак, целые числа — это натуральные числа, числа, противоположные натуральным, и число 0.
Существуют четыре базовых арифметических действия: сложение (+), вычитание (-), умножение (х) и деление (:).
Сложение любого числа с отрицательным числом равносильно вычитанию из этого числа равного по величине, но взятого с противоположным знаком числа. Так, например, при сложении -4 и 3 получаем 3 - 4 = - 1.
СОДЕРЖАНИЕ.
Глава 1. Числа и алгебра.
1.1. Основы арифметики.
1.2. Дроби, десятичные дроби и проценты.
1.3. Показатели степени и научная форма записи числа.
1.4. Приближенные вычисления и вычисления формул.
1.5. Алгебра.
1.6. Простые уравнения.
1.7. Системы уравнений.
1.8. Преобразование формул.
1.9. Квадратные уравнения.
1.10. Неравенства.
1.11. Логарифмы.
1.12. Экспоненциальные функции.
1.13. Гиперболические функции
1.14. Простейшие дроби.
1.15. Числовые последовательности.
1.16. Биномиальные коэффициенты.
1.17. Ряды Маклорена.
1.18. Решение уравнений итеративными методами.
1.19. Системы счисления, используемые в информатике.
Глава 2. Определение длин, площадей и объемов.
2.1. Площади плоских фигур.
2.2. Круг и его свойства.
2.3. Объемы простых тел.
2.4. Площади неправильных фигур, объемы неправильных тел.
Глава 3. Геометрия и тригонометрия.
3.1. Геометрия и треугольники.
3.2. Введение в тригонометрию.
3.3. Декартовы и полярные координаты.
3.4. Треугольники и некоторые их практические применения.
3.5. Тригонометрические кривые.
3.6. Тригонометрические тождества и уравнения.
3.7. Тригонометрические и гиперболические функции.
3.8. Формулы сложения.
Глава 4. Графики.
4.1. Прямолинейные графики.
4.2. Приведение нелинейных законов в линейную форму.
4.3. Графики в логарифмических осях.
4.4. Графические методы решения уравнений.
4.5. Кривые в полярных координатах.
4.6. Функции и их графики.
Глава 5. Векторы.
5.1. Векторы.
5.2. Сложение колебаний.
5.3. Скалярное и векторное произведения.
Глава 6. Комплексные числа.
6.1. Комплексные числа.
6.2. Теорема Муавра.
Глава 7. Матрицы и детерминанты.
7.1. Теория матриц и детерминантов.
7.2. Решение систем уравнений методом матриц и детерминантов.
Глава 8. Булева алгебра и логические схемы.
8.1. Булева алгебра.
8.2. Логические схемы и элементы.
Глава 9. Дифференциальное исчисление.
9.1. Введение в теорию дифференцирования.
9.2. Методы дифференцирования.
9.3. Некоторые применения производных.
9.4. Дифференцирование параметрических уравнений.
9.5. Дифференцирование неявных функций.
9.6. Логарифмическое дифференцирование.
9.7. Дифференцирование обратных тригонометрических и гиперболических функций.
9.8. Нахождение частных производных.
9.9. Полный дифференциал, скорость изменения и приращения.
9.10. Экстремумы и седловые точки функций двух переменных.
Глава 10. Интегральное исчисление.
10.1. Введение в теорию интегрирования.
10.2. Интегрирование алгебраической подстановкой.
10.3. Тригонометрические и гиперболические подстановки.
10.4. Интегрирование разложением на простейшие дроби.
10.5. Подстановка t = tg 0/2.
10.6. Интегрирование по частям.
10.7. Формула понижения степени.
10.8. Численное интегрирование.
10.9. Площади под и между кривыми.
10.10. Среднее и среднее квадратичное значения.
10.11. Объемы тел вращения.
10.12. Центры тяжести простых фигур.
10.13. Моменты инерции правильных плоских фигур.
Глава 11. Дифференциальные уравнения.
11.1. Общие понятия.
11.2. Однородные дифференциальные уравнения первого порядка.
11.3. Линейные дифференциальные уравнения первого порядка.
11.4. Однородные дифференциальные уравнения второго порядка.
11.5. Неоднородные дифференциальные уравнения второго порядка.
11.6. Численное решение дифференциальных уравнений первого порядка.
Глава 12. Статистика и теория вероятностей.
12.1. Представление статистических данных.
12.2. Меры среднего значения и дисперсии.
12.3. Теория вероятностей.
12.4. Биномиальное распределение и распределение Пуассона.
12.5. Нормальное распределение.
12.6. Линейная корреляция.
12.7. Линейная регрессия.
12.8. Теория выборок и оценок.
Глава 13. Преобразования Лапласа.
13.1. Введение в теорию преобразования Лапласа.
13.2. Свойства преобразований Лапласа.
13.3. Обратное преобразование Лапласа.
13.4. Решение дифференциальных уравнений с помощью преобразования Лапласа.
13.5. Решение систем дифференциальных уравнений с помощью преобразования Лапласа.
Глава 14. Ряды Фурье.
14.1. Ряды Фурье периодических функций с периодом 2п.
14.2. Ряды Фурье непериодических функций в диапазоне 2п.
14.3. Ряды Фурье четных и нечетных функций на полупериоде.
14.4. Ряд Фурье для произвольного интервала.
14.5. Численные методы гармонического анализа.
Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Инженерная математика, карманный справочник, Бёрд Д., 2008 - fileskachat.com, быстрое и бесплатное скачивание.
Скачать pdf
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.Купить эту книгу
Скачать - pdf - Яндекс.Диск.
Дата публикации:
Хештеги: #справочник по математике :: #математика :: #Бёрд
Смотрите также учебники, книги и учебные материалы:
Следующие учебники и книги:
- Справочник по обыкновенным дифференциальным уравнениям, Зайцев В.Ф., Полянин А.Д., 2001
- Элементарная математика, Краткие сведения, справочник, Ринчино А.Л., 2015
- Справочник по математическим формулам и графикам функций, Старков С.Н.
- Математика, Вербицкий В.И., 2017
Предыдущие статьи:
- Энциклопедия статистических терминов, в 8 томах, том 3, организация официальной статистики, 2011
- Энциклопедия статистических терминов, в 8 томах, том 2, инструментальные методы статистики, 2011
- Энциклопедия статистических терминов, в 8 томах, том 1, методологические основы статистики, 2011
- Алгоритмы шифрования, Специальный справочник, Панасенко С.П., 2009