Учебное пособие посвящено методам вычисления неопределенных интегралов. Техника вычисления интегралов наряду с техникой дифференцирования является важной составной частью фундаментального образования математиков и физиков-теоретиков. Поэтому наличие пособий по данной тематике представляется актуальным. Особенностью данного пособия является то, что все рассматриваемые задачи приводятся с решениями, поэтому оно может быть использовано для самостоятельного изучения.
Настоящее пособие предназначено для студентов университетов, технических и педагогических ВУЗов, ВУЗов с углубленным изучением математики. Оно может быть также использовано преподавателями при проведении семинарских занятий по рассматриваемой в пособии теме.
Настоящая книга представляет собой учебное пособие по технике вычисления неопределенного интеграла для студентов физико-математических специальностей высших учебных заведений и университетов. За основу взят известный задачник Б. П. Демидовича, являющийся основным задачником по рассматриваемой теме. Особенностью данного пособия является решение всех примеров задачника, составляющих его третью главу. В связи с этим автор решил сохранить нумерацию задач, принятую в задачнике Б. П. Демидовича, поэтому первая задача в пособии имеет номер 1628. Помимо примеров из указанного выше задачника, в тексте присутствуют задачи, облегчающие понимание дальнейшего материала. Они имеют свою нумерацию (задача 1, задача 2 и т. д.), и их решения (или ответы к ним) приведены в конце книги. В пособии нет теоретического материала (теорем и доказательств), упор делается на практическую сторону вопроса. Умение вычислять интегралы важно не только для будущих математиков, но и для будущих физиков-теоретиков.
ОГЛАВЛЕНИЕ
Предисловие 3
Глава 1. Введение в интегральное исчисление 4
§ 1.1. Таблица интегралов 4
§ 1.2. Гиперболические функции 6
§ 1.3. Дополнительная таблица интегралов 11
§ 1.4. Использование свойств четности 12
Глава 2. Простейшие неопределенные интегралы 13
§ 2.1. Использование таблицы интегралов 13
§ 2.2. Линейная замена переменной 19
§ 2.3. Замена переменной 24
§ 2.4. Интегрирование по частям 76
Глава 3. Интегрирование рациональных функций 118
§ 3.1. Метод неопределенных коэффициентов 118
§ 3.2. Метод Остроградского 149
Глава 4. Интегрирование иррациональных функций 187
§ 4.1. Интегрирование простейших иррациональностей 187
§ 4.2. Интегрирование простейших квадратичных иррациональностей 195
§ 4.3. Подстановки Эйлера 238
§ 4.4. Интеграл от дифференциального бинома 255
Глава 5. Интегрирование тригонометрических функций 266
§ 5.1. Простейшие приемы интегрирования 266
§ 5.2. Использование рекуррентных соотношений 281
§ 5.3. Применение тригонометрических формул 287
§ 5.4. Интегралы вида /i?(sinx, cos x) dx 297
§ 5.5. Различные приемы интегрирования 312
Глава 6. Интегрирование различных трансцендентных функций 337
Глава 7. Разные примеры на интегрирование функций 379
Решения и ответы к задачам 421
Предметный указатель 429
Литература 430
Купить книгу Неопределенный интеграл, Практикум, Орловский Д.Г., 2006 .
Купить книгу Неопределенный интеграл, Практикум, Орловский Д.Г., 2006 .
По кнопкам выше и ниже «Купить бумажную книгу» и по ссылке «Купить» можно купить эту книгу с доставкой по всей России и похожие книги по самой лучшей цене в бумажном виде на сайтах официальных интернет магазинов Лабиринт, Озон, Буквоед, Читай-город, Литрес, My-shop, Book24, Books.ru.
По кнопке «Купить и скачать электронную книгу» можно купить эту книгу в электронном виде в официальном интернет магазине «Литрес», и потом ее скачать на сайте Литреса.
По кнопке «Найти похожие материалы на других сайтах» можно найти похожие материалы на других сайтах.
On the buttons above and below you can buy the book in official online stores Labirint, Ozon and others. Also you can search related and similar materials on other sites.
Хештеги: #учебник по математике :: #математика :: #Орловский :: #интеграл
Смотрите также учебники, книги и учебные материалы:
- Математика и спорт, Садовский Л.Е., Садовский А.Л., 1985
- Гюйгенс и Барроу, Ньютон и Гук, Первые шаги математического анализа и теории катастроф, Арнольд В.И., 1989
- Теория вероятностей и математическая статистика, Лисьев В.П., 2006
- Руководство к решению задач по высшей математике, Теории вероятностей и математической статистике, Лихолетов И.И., Мацкевич И.П., 1969
- Дифференциальные уравнения, Пушкарь Е.А., 2007
- Высшая математика, Малахов А.Н., Максюков Н.И., Никишкин В.А., 2008
- Аналитическая геометрия и линейная алгебра, Умнов А.Е., 2011
- О математической строгости и школьном курсе математики, Шень А., 2006