учебник по математике

Математика, учебник для студентов учреждений среднего профессионального образования, Башмаков М.И., 2014

Математика, Учебник для студентов учреждений среднего профессионального образования, Башмаков М.И., 2014.

Учебник написан в соответствии с программой изучения математики в учреждениях среднего профессионального образования и охватывает все основные темы: теория чисел, корни, степени, логарифмы, прямые и плоскости, пространственные тела, а также основы тригонометрии, анализа, комбинаторики и теории вероятностей. Для студентов учреждений среднего профессионального образования.

Математика, Учебник для студентов учреждений среднего профессионального образования, Башмаков М.И., 2014
Скачать и читать Математика, учебник для студентов учреждений среднего профессионального образования, Башмаков М.И., 2014
 

Математика, учебник для 6 класса общеобразовательных учебных заведений с обучением на русском языке, Тарасенкова Н.А., Богатырёва И.Н., Коломиец О.Н., Сердюк З.А., 2014

Математика, Учебник для 6 класса общеобразовательных учебных заведений с обучением на русском языке, Тарасенкова Н.А., Богатырёва И.Н., Коломиец О.Н., Сердюк З.А., 2014.

Как изучать математику по этому учебнику? Весь материал разделён на 5 глав, а главы — на параграфы. В каждом параграфе содержится теоретический материал и задачи. В учебнике используются специальные значки (пиктограммы). Они помогут вам лучше ориентироваться в учебном материале.

Математика, Учебник для 6 класса общеобразовательных учебных заведений с обучением на русском языке, Тарасенкова Н.А., Богатырёва И.Н., Коломиец О.Н., Сердюк З.А., 2014
Скачать и читать Математика, учебник для 6 класса общеобразовательных учебных заведений с обучением на русском языке, Тарасенкова Н.А., Богатырёва И.Н., Коломиец О.Н., Сердюк З.А., 2014
 

Что такое координаты и зачем они нужны, Бахарев Ю.П., 2017

Что такое координаты и зачем они нужны, Бахарев Ю.П., 2017.

Фрагмент из книги.
Знакомство с методом координатами мы начнем с разбора самого простого случая: с определения точки, прямой и их взаимного расположения, что такое числовая ось.
Евклид определил точку как то, что не имеет измерений. В современной аксиоматике геометрии точка является первичным понятием, задаваемым перечнем его свойств. В геометрии, топологии и близких разделах математики точкой называют абстрактный объект в пространстве, не имеющий ни объёма, ни площади, ни длины, ни каких-либо других измеримых характеристик.

Что такое координаты и зачем они нужны, Бахарев Ю.П., 2017
Скачать и читать Что такое координаты и зачем они нужны, Бахарев Ю.П., 2017
 

Основы теории обыкновенных дифференциальных уравнений, Умнов А.Е., Умнов Е.А., 2016

Основы теории обыкновенных дифференциальных уравнений, Умнов А.Е., Умнов Е.А., 2016.

  Содержит основные разделы теории обыкновенных дифференциальных уравнений и введение в вариационное исчисление.
Набор рассматриваемых в учебном пособии вопросов соответствует стандартной университетской программе по предмету «Обыкновенные дифференциальные уравнения» и может являться основой для последующего, более глубокого, ознакомления как с теорией, так и с приложениями данного предмета. Изложение материала, достаточно подробное и ясное, включает описание методов решения некоторых, принципиально важных для успешного освоения курса, задач.
Предназначено для студентов высших учебных заведений физико-математического, технического, естественнонаучного и экономического направлений подготовки, программа обучения которых предусматривает изучение базовых тем данного учебного курса, а также для преподавателей кафедр университетов и вузов естественнонаучного профиля.

Основы теории обыкновенных дифференциальных уравнений, Умнов А.Е., Умнов Е.А., 2016
Скачать и читать Основы теории обыкновенных дифференциальных уравнений, Умнов А.Е., Умнов Е.А., 2016
 

Новые алгоритмы вычислительной гидродинамики для многопроцессорных вычислительных комплексов, монография, Головизнин В.М., Зайцев М.А., Карабасов С.А., Коротким И.А., 2013

Новые алгоритмы вычислительной гидродинамики для многопроцессорных вычислительных комплексов, Монография, Головизнин В.М., Зайцев М.А., Карабасов С.А., Коротким И.А., 2013.

   В настоящей монографии, предназначенной для студентов, аспирантов и научных сотрудников, собран воедино и систематизирован материал многолетней работы большой группы специалистов в области математического моделирования и вычислительной математики. Среди множества направлений и подходов, конкурирующих в современном мире, авторы выбрали сравнительно новое направление (метод «КАБАРЕ»), к развитию которого они оказались в той или иной мере причастны. Данный подход, развиваемый в МГУ имени М.В. Ломоносова, ИБРАЭ РАН, ЦАГИ и ряде других российских и зарубежных (Кембриджский университет, Лондонский университет «Квин Мэри») организаций, имеет хорошие конкурентные позиции и активно развивается.
В предлагаемой монографии очень подробно описана ключевая идея метода «КАБАРЕ» в ее развитии - от простейших линейных одномерных уравнений гиперболического типа до методик решения многомерных задач гидродинамики и газовой динамики на неструктурированных сетках в сложных пространственных областях, характерных для приложений индустриальной математики.
Книгу можно рассматривать в качестве ученого пособия и основы для разработки вычислительного практикума по методам решения уравнений математической физики с доминирующими процессами сеточного переноса.

Новые алгоритмы вычислительной гидродинамики для многопроцессорных вычислительных комплексов, Монография, Головизнин В.М., Зайцев М.А., Карабасов С.А., Коротким И.А., 2013
Скачать и читать Новые алгоритмы вычислительной гидродинамики для многопроцессорных вычислительных комплексов, монография, Головизнин В.М., Зайцев М.А., Карабасов С.А., Коротким И.А., 2013
 

Cambridge IGCSE, Mathematics, Core and Extended, Pimentel R., Wall T., 2013

Cambridge IGCSE, Mathematics, Core and Extended, Pimentel R., Wall T., 2013.

   This textbook has been written by two experienced mathematics teachers.
The book is written to cover every section of the Cambridge IGCSE* Mathematics (0580) syllabus (Core and Extended ). The syllabus headings (Number. Algebra and graphs. Geometry, Mensuration. Coordinate geometry. Trigonometry. Matrices and transformations. Probability, Statistics) arc mirrored in the textbook. Each major topic is divided into a number of chapters, and each chapter has its own discrete exercises and student assessments. The Core sections are identified with a green band and the Extended with a red band. Students using this book may follow either a Core or Extended curriculum.

Cambridge IGCSE, Mathematics, Core and Extended, Pimentel R., Wall T., 2013
Скачать и читать Cambridge IGCSE, Mathematics, Core and Extended, Pimentel R., Wall T., 2013
 

Анализ устойчивости вычислительных схем, Целых А.Н., Васильев В.С., Котов Э.М., 2018

Анализ устойчивости вычислительных схем, Целых А.Н., Васильев В.С., Котов Э.М., 2018.

   В учебном пособии представлены варианты программной реализации анализа устойчивости вычислительных схем, а также рассмотрены примеры применения стандартных функций библиотеки GNU SCIENTIFIC LIBRARY для решения прикладных задач.
Пособие предназначено для студентов высших учебных заведений, обучающихся по направлению 10.03.01 «Информационная безопасность» (профиль «Информационно-аналитические системы безопасности») по курсу «Численные методы».

Анализ устойчивости вычислительных схем, Целых А.Н., Васильев В.С., Котов Э.М., 2018
Купить бумажную или электронную книгу и скачать и читать Анализ устойчивости вычислительных схем, Целых А.Н., Васильев В.С., Котов Э.М., 2018
 

Элементарная топология, Виро О.Я., Иванов О.А., Нецветаев Н.Ю., Харламов В.М., 2012

Элементарная топология, Виро О.Я., Иванов О.А., Нецветаев Н.Ю., Харламов В.М., 2012.

   В книге рассказывается об основных понятиях топологии. В нее включен основополагающий материал по общей топологии и введение в алгебраическую топологию, которое выстраивается вокруг понятий фундаментальной группы и накрывающего пространства. Основной материал книги содержит большое количество нетривиальных примеров и задач различной степени трудности. Книга предназначена для студентов младших курсов.
Первое издание книги вышло в 2010 г.

Элементарная топология, Виро О.Я., Иванов О.А., Нецветаев Н.Ю., Харламов В.М., 2012
Скачать и читать Элементарная топология, Виро О.Я., Иванов О.А., Нецветаев Н.Ю., Харламов В.М., 2012
 
Показана страница 78 из 513




 

2025-12-23 10:35:39