Центральная задача настоящей монографии заключается в следующем. Пусть на некоем множестве задано не более чем счётное семейство алгебр подмножеств, и для каждой алгебры существуют подмножества, ей не принадлежащие. При каких условиях существует подмножество, не принадлежащее всем алгебрам? Мы занимаемся также вариациями этой задачи. Если семейство алгебр конечное, мы приходим к комбинаторным задачам о конечных множествах. Если же семейство алгебр счётное, мы приходим к трудным задачам теории множеств (в монографии приведено доказательство глубокой теоремы Гитика—Шелаха) и к комбинаторике ультрафильтров. Книга предназначена для специалистов в области математики.
Основная идея. Основные результаты.
Предмет наших исследований—множества, не принадлежащие алгебрам. Так как эти множества суть глобальные объекты, их изучение представляет большие трудности. Наша идея состоит в том, что утверждение «множество не принадлежит алгебре» можно выразить на языке ультрафильтров, заданных на X. Но ультрафильтры— объекты локальные, так как ультрафильтр на X есть точка компактного расширения Стоуна—Чеха пространства X, когда на X задана дискретная топология.
Оглавление.
Глава 1.Введение.
Глава 2.Основная идея. Основные результаты.
Глава 3.Конечные семейства алгебр.
Глава 4.Доказательство теоремы Гитика—Шелаха.
Глава 5.Счётные семейства алгебр (общие теоремы).
Глава 6.Счётные семейства алгебр и почти алгебр.
Глава 7.Некоторые задачи о множествах, не принадлежащих алгебрам.
Литература.
Купить .
По кнопкам выше и ниже «Купить бумажную книгу» и по ссылке «Купить» можно купить эту книгу с доставкой по всей России и похожие книги по самой лучшей цене в бумажном виде на сайтах официальных интернет магазинов Лабиринт, Озон, Буквоед, Читай-город, Литрес, My-shop, Book24, Books.ru.
По кнопке «Купить и скачать электронную книгу» можно купить эту книгу в электронном виде в официальном интернет магазине «Литрес», и потом ее скачать на сайте Литреса.
По кнопке «Найти похожие материалы на других сайтах» можно найти похожие материалы на других сайтах.
On the buttons above and below you can buy the book in official online stores Labirint, Ozon and others. Also you can search related and similar materials on other sites.
Хештеги: #Гринблат :: #учебник по алгебре :: #алгебра :: #комбинаторика
Смотрите также учебники, книги и учебные материалы:
- Лекции по аналитической геометрии, Веселов А.П., Троицкий Е.В., 2017
- Начертательная геометрия, Варенцова Т.А., Уполовникова Г.Н., 2019
- Веселая геометрия, для детей дошкольного возроста 0+, Тимофеевский А., 2013
- Введение в высшую алгебру и аналитическую геометрию, Артамонов В.А., 2007
- Геометрии, Френкина Б.Р., Сосинский А.Б., 2017
- Лекции по аналитической геометрии, Смирнов Ю.М., 1998
- Алгебраическая топология с геометрической точки зрения, Скопенков А.Б., 2016
- Алгебра, том 2, Глухов М.M., Елизаров В.П., Нечаев А.А., 2003