Математика для старшеклассников, Задачи повышенной сложности, 300 задач с подробными решениями, Супрун В.П.

К сожалению, на данный момент у нас невозможно бесплатно скачать полный вариант книги.

Но вы можете попробовать скачать полный вариант, купив у наших партнеров электронную книгу здесь, если она у них есть наличии в данный момент.

Также можно купить бумажную версию книги здесь.

Ссылки на файлы заблокированы по запросу правообладателей.

Links to files are blocked at the request of copyright holders.

Математика для старшеклассников, Задачи повышенной сложности, 300 задач с подробными решениями, Супрун В.П.

  В учебном пособии представлены 300 задач повышенной сложности, решение которых основано на применении указанных выше численных неравенств и метода математической индукции. Некоторые уравнения и неравенства эффективно решаются функциональными методами, выделением полного квадрата, введением параметра или применением тригонометрической подстановки.
Настоящее пособие представляет собой существенно исправленное и дополненное переиздание учебного пособия автора «Математика для старшеклассников: задачи повышенной сложности» (Мн., Аверсэв, 2002). Пособие содержит большое количество новых задач повышенной сложности, многие из которых позаимствованы из материалов Централизованного тестирования и вступительных экзаменов по математике в Белорусском государственном университете (г. Минск) в течение последних пяти лет.

Математика для старшеклассников, Задачи повышенной сложности, 300 задач с подробными решениями, Супрун В.П.


Метод математической индукции.
Метод математической индукции является одним из наиболее часто встречающихся методов в математике. Допустим требуется доказать некоторое утверждение (или формулу) R(n), которое зависит от целочисленного параметра n, где n > а. Чаще всего в качестве n фигурируют натуральные числа. Непосредственная проверка утверждения R(n) для каждого конкретного числа n невозможна, поскольку множество натуральных чисел бесконечно.

Суть метода математической индукции состоит в следующем. Первоначально необходимо убедиться в справедливости утверждения (или формулы) R(n) для начального значения параметра n, т. е. необходимо убедиться в справедливости утверждения R(a). Эта часть доказательства называется базисом индукции.

Купить .

По кнопкам выше и ниже «Купить бумажную книгу» и по ссылке «Купить» можно купить эту книгу с доставкой по всей России и похожие книги по самой лучшей цене в бумажном виде на сайтах официальных интернет магазинов Лабиринт, Озон, Буквоед, Читай-город, Литрес, My-shop, Book24, Books.ru.

По кнопке «Купить и скачать электронную книгу» можно купить эту книгу в электронном виде в официальном интернет магазине «Литрес», и потом ее скачать на сайте Литреса.

По кнопке «Найти похожие материалы на других сайтах» можно найти похожие материалы на других сайтах.

On the buttons above and below you can buy the book in official online stores Labirint, Ozon and others. Also you can search related and similar materials on other sites.


Дата публикации:

Хештеги: :: ::


Следующие учебники и книги:
Предыдущие статьи: