Пособие содержит самостоятельные и контрольные работы к двухуровневому учебнику "Алгебра и начала математического анализа. 10 класс: базовый и профильный уровни" Е.П.Нелина, В.А.Лазарева. Пособие также можно использовать при работе по любому учебнику и для самообразования, например, при подготовке к решению заданий ЕГЭ. Предлагаемые работы состоят из 6 вариантов трех уровней сложности и предназначены для организации дифференцированной самостоятельной работы учащихся.
Примеры.
Найдите все значения параметра а, при которых уравнение имеет только один действительный корень:
/ах - 2 + 1 = х .
/3 - ах + х = 1.
Найдите решение системы, используя
а) подстановку и почленное сложение (вычитание) уравнений системы:
б) разложение на множители или использование основного тригонометрического тождества:
в) замену переменных:
СОДЕРЖАНИЕ
ФУНКЦИИ, УРАВНЕНИЯ, НЕРАВЕНСТВА 5
С-1. Числовые функции, их свойства и графики 5
С-2. Уравнения 7
С-3. Применение свойств функций к решению уравнений 10
С-4. Неравенства. Метод интервалов 12
С-5. Уравнения и неравенства, содержащие знак модуля 14
С-6. Построение графиков функций, уравнений и неравенств 17
С-7. Уравнения и неравенства с параметрами 19
К-1 (КП-1). Функции, уравнения, неравенства 20
С-8. Метод математической индукции. Делимость целых чисел 24
С-9. Многочлены. Теорема Безу. Схема Горнера. Формулы Виета 25
(КП-2). Многочлены и их корни. Метод математической индукции 27
ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ 30
С-10. Радианная мера углов. Тригонометрические функции угла и числового аргумента 30
С-11. Свойства и графики тригонометрических функций 32
С-12*. Исследование тригонометрических функций и построение их графиков (домашняя практическая работа) 36
С-13. Соотношения между тригонометрическими функциями одного аргумента 37
С-14. Формулы сложения. Формулы двойного аргумента. Формулы приведения 39
С-15. Формулы преобразования суммы тригонометрических функций в произведение и произведения в сумму 42
С-16. Формулы половинного аргумента. Формулы преобразования выражения a sin x+ b cos x 44
К-2 (КП-3). Тригонометрические функции 46
ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ И НЕРАВЕНСТВА 50
С-17. Обратная функция. Обратные тригонометрические функции 50
С-18*. Применение свойств обратных тригонометрических функций (домашняя самостоятельная работа) 53
С-19. Простейшие тригонометрические уравнения 55
С-20. Тригонометрические уравнения 57
С-21. Отбор корней тригонометрических уравнений. Системы уравнений 58
К-3 (КП-4). Тригонометрические уравнения и неравенства 60
С-22. Более сложные тригонометрические уравнения 62
С-23. Системы тригонометрических уравнений 64
С-24. Тригонометрические уравнения с параметрами 65
С-25. Простейшие тригонометрические неравенства 67
С-26. Более сложные тригонометрические неравенства 68
(КП-5). Тригонометрические уравнения, неравенства и их системы 69
СТЕПЕННАЯ ФУНКЦИЯ 72
С-27. Корень n-ой степени и его свойства 72
С-28. Иррациональные уравнения 75
С-29. Степень с рациональным показателем и ее свойства 77
С 30. Методы решения иррациональных уравнений 81
С-31. Системы иррациональных уравнений. Иррациональные неравенства 82
С-32. Иррациональные уравнения и неравенства с параметрами 84
С-33*. Методы решения иррациональных уравнений, неравенств, систем (домашняя самостоятельная работа) 86
К-4 (КП-6). Степени и корни 88
ПОКАЗАТЕЛЬНАЯ И ЛОГАРИФМИЧЕСКАЯ ФУНКЦИИ 92
С-34. Показательные уравнения и их системы 92
С-35. Показательные неравенства 93
С-36*. Методы решения показательных уравнений и неравенств (домашняя самостоятельная работа) 95
К-5 (КП-7). Показательная функция 97
С-37. Логарифм. Свойства логарифмов 100
С-38. Логарифмические уравнения и их системы 103
С-39. Логарифмические неравенства 104
С-40*. Методы решения логарифмических уравнений, неравенств и систем (домашняя самостоятельная работа) 106
К-6 (КП-8). Логарифмическая функция 108
С-41. Показательно-степенные уравнения и неравенства 111
С-42*. Применение логарифмов к решению трансцендентных уравнений и систем (домашняя самостоятельная работа) 112
С-43. Показательные и логарифмические уравнения. Задачи с параметрами 113
(КП-9) Показательно-степенные уравнения и неравенства. Показательные и логарифмические уравнения и неравенства 115
ОТВЕТЫ 117
Ответы к контрольным работам 117
Ответы к домашним самостоятельным работам 128
ЛИТЕРАТУРА 133
ПРИЛОЖЕНИЕ.
ОРИЕНТИРОВОЧНОЕ ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ 134
СОДЕРЖАНИЕ 142.
Купить книгу Самостоятельные и контрольные работы по алгебре и началам математического анализа, 10 класс, Ершова А.П., Нелин Е.П., 2013 .
По кнопкам выше и ниже «Купить бумажную книгу» и по ссылке «Купить» можно купить эту книгу с доставкой по всей России и похожие книги по самой лучшей цене в бумажном виде на сайтах официальных интернет магазинов Лабиринт, Озон, Буквоед, Читай-город, Литрес, My-shop, Book24, Books.ru.
По кнопке «Купить и скачать электронную книгу» можно купить эту книгу в электронном виде в официальном интернет магазине «Литрес», и потом ее скачать на сайте Литреса.
По кнопке «Найти похожие материалы на других сайтах» можно найти похожие материалы на других сайтах.
On the buttons above and below you can buy the book in official online stores Labirint, Ozon and others. Also you can search related and similar materials on other sites.
Хештеги: #контрольные по алгебре :: #алгебра :: #Ершова :: #Нелин :: #10 класс
Смотрите также учебники, книги и учебные материалы:
- Сборник задач для подготовки и проведения письменного экзамена по алгебре за курс основной школы, 9 класс, Шестаков С.А., Высоцкий И.Р., Звавич Л.И., 2008
- Дидактические материалы по алгебре, 10-11 класс, Зив Б.Г., Гольдич В.А., 2013
- Тетрадь-конспект по алгебре, 9 класс, Ершова А.П., Голобородько В.В., Крижановский А.Ф., 2012
- Самостоятельные и контрольные работы по алгебре и геометрии, 7 класс, Ершова А.П., Ершова А.С., Голобородько В.В., 2013
- Дидактические материалы по алгебре, 7 класс, Попов М.А., 2014
- Алгебра и начала математического анализа, 10 класс, Контрольные работы, Глизбург В.И., 2007
- Алгебра, 9 класс, самостоятельные и контрольные работы, Глазков Ю.А., Варшавский И.К., Гаиашвили М.Я., 2013
- Алгебра, 7 класс, контрольные измерительные материалы, Глазков Ю.А., Гаиашвили М.Я., 2014