Болибрух
Дифференциальные формы и связности, Болибрух А.А., Казарян М.Э., 2018
Книга написана по материалам лекций, прочитанных авторами на первой летней школе «Современная математике» в Дубне в июле 2001 года.
В нее вошли ранее издававшиеся брошюры А. А. Болибруха и М. Э. Казаряна, в которых рассказывается об основных понятиях дифференциальной геометрии: дифференциальных формах, расслоениях, связностях, а также об их использовании в современной физике.
Книга адресована студентам младших курсов и школьникам старших классов.
Материалы книги были опубликованы в двух брошюрах в 2002 г.
Билеты по математике и физике, предлагавшиеся на вступительных экзаменах в 1986-1988 годах, Агаханов Н.X., Болибрух А.А., Дерябкин В.Н., Киркинский А.И., 1989
Московский физико-технический институт публикует условия задач предлагавшихся абитуриентам на письменных экзаменах по математике и физике в 1986-1988 годах.
Все задачи снабжены ответами.
На выполнение каждой письменной работы давалось 4 часа.
Методическое пособие по математике и физике, Билеты, предлагавшиеся на вступительных экзаменах в 1977-1980г, Козел С.М., Можаев В.В., Петеримова Н.И., Шелагин А.В., Шабунин М.И., Чехлов В.И., Федосов Б.В., Кутасов А.Д., Болибрух А.А., 1981
Московский физико-технический институт публикует условия задач, предлагавшихся абитуриентам на письменных экзаменах по математике и физике в 1977-1980 годах. Все задачи снабжены ответами. На выполнение каждой письменной работы давалось пять часов.
Методические разработки по математике и физике, Билеты, предлагавшиеся на вступительных экзаменах 1981-1983, Козел С.М., Петеримова Н.И., Шелагин А.В., Шеронов А.А., Шабунин М.И., Агаханов Н.X., Болибрух А.А., Коновалов С.П., Федосов Б.В., Чехлов В.И.
Московский физико-технический институт публикует условия задач, предлагавшихся абитуриентам на письменных экзаменах по математике и физике в 1981—198З годах. Все задачи снабжены ответами. На выполнение каждой письменной работы давалось 5 часов.
Фуксовы дифференциальные уравнения и голоморфные расслоения, Болибрух А.А., 2000
В лекциях начала аналитической теории дифференциальных уравнений излагаются с точки зрения расслоений с мероморфными связностями на римановой сфере. Этот подход позволяет добиться значительного прогресса в решении таких знаменитых старых задач, как проблема Римана—Гильберта и задача о Биркгофовой стандартной форме, исследованию которых и посвящена книга.
Лекции, начинающиеся с основ теории и требующие от читателя знакомства лишь со стандартными курсами обыкновенных дифференциальных уравнений и комплексного анализа, выводят его на передний край этой бурно развивающейся в последнее время области математики, имеющей важные приложения к задачам математической физики.
Условия задач, предлагавшихся абитуриентам на письменных экзаменах по математике и физике в 1989-1990 г, Агаханов Н.Х., Болибрух А.А., Букин К.А., Коновалов С П., Резниченко С В., Самаров К.Л., Самарова С.С., Уроев В.М., Дерябкин В.Н., Можаев В.В.
Все задачи снабжены ответами.
На выполнение каждой письменной работы давалось 4 часа в 1989 г. и 4 часа 30 минут в 1990 г.
Задачи.
1. Функция у=-26х³+24х²-6х является суммой кубов двух линейных функций. Найти эти функции. На продолжении стороны AD ромба ABCD за точку D взята точка К. Прямые АС и ВК пересекаются в точке Q. Известно, что АК=14 и что точки A, В и Q лежат на окружности радиуса 6, центр которой принадлежит отрезку АК. Найти длину отрезка ВК. В основании пирамиды SABC лежит остроугольный равнобедренный треугольник ABC (АВ = ВО) площади 2. Ребро SA является высотой пирамиды. Рассматриваются проекции пирамиды SABC на всевозможные плоскости, проходящие через прямую АВ. Наибольшая из площадей таких проекций равна 2,5, а наименьшая - 3/√5. Найти объем пирамиды.
2. Даны правильная четырехугольная пирамида SABCD и цилиндр, центр симметрии которого лежит на прямой SO (SO - высота пирамиды). Точка Е- середина апофемы грани BSC, точка F принадлежит ребру SD, причем SF = 2FD. Прямоугольник, являющийся одним из осевых сечений цилиндра, расположен так, что две его вершины лежат на прямой АВ, а одна из двух других вершин лежит на прямой EF. Найти объем цилиндра, если SO = 12, АВ = 4.
3. С горизонтальной поверхности земли бросили мяч и он упал на землю со скоростью V = 9,8 м/с под углом ᵝ - 30° к горизонту. Модуль вертикальной составляющей скорости в точке бросания был на 20% больше, чем в точке падения. Найти время полета мяча. Считать, что сила сопротивления движению мяча пропорциональна его скорости.
Условия задач, предлагавшихся абитуриентам на письменных экзаменах по математике и физике в 1989-1990 года, Агаханов Н.Х., Болибрух А.А., Букин К.А., Коновалов С.П., Резниченко С.В., Самаров К.Л., Самарова С.С., Уроев В.М., Дерябкин В.Н., Можаев В.
Все задачи снабжены ответами.
На выполнение каждой письменной работы давалось 4 часа в 1989 г. и 4 часа 30 минут в 1990 г.
Основание АС равнобедренного треугольника ABC является хордой окружности, центр которой лежит внутри треугольника ABC. Прямые, проходящие через точку В, касаются окружности в точках D и E. Найти площадь треугольника DBE, если АВ = ВС = 2, ABC = 2arcsin(1/√5), а радиус окружности равен 1.
Сфера радиуса 13 касается граней ABCD, AA1D1D и AA1B1B куба ABCDA1B1C1D1. Вторая сфера радиуса 5 касается граней ABCD1 AA1D1D и CC1D1D куба и касается первой сферы. На ребре ВС взята точка F, на продолжении ребра DC за точку С - точка Е так, что CE=СD. Плоскость C1EF пересекает первую сферу по окружности, радиус которой в 2,6 раза больше радиуса окружности, по которой эта плоскость пересекает вторую сферу. Найти отношение BF: FC.
Билеты по математике и физике, предлагавшиеся на вступительных экзаменах в 1986-1988 годах, Агаханов Н.X., Болибрух А,А., Букин К.А., Коновалов С.П., Самаров К.Л., Самарова С.С., Чехлов В.И., Шабунин М.И., Дерябкин В.Н., Киркинский А.И.
Московский физико-технический институт публикует условия задач, предлагавшихся абитуриентам на письменных экзаменах по математике и физике в 1986—1988 годах.
Все задачи снабжены ответами.
На выполнение каждой письменной работы давалось 4 часа.
Показана страница 1 из 2