Геометрические тела, часть 2, Многогранники и тела вращения, Приходько В.Н., 2014

Геометрические тела, Часть 2, Многогранники и тела вращения, Приходько В.Н., 2014.

Методические рекомендации по черчению для подготовительных отделений, лицейских классов (в помощь поступающим на специальность «Архитектура»). Построение изображений начинается с анализа формы модели, расчленения модели на простейшие геометрические тела и затем поэтапное проецирование этих геометрических тел. Теоретические вопросы, подкрепленные графическим материалом о многогранниках и телах вращения, содержатся в рекомендациях. Сечения геометрических тел плоскостями, построение натуральной величины сечения, развертки и аксонометрии усеченных тел и способы их решения представлены в виде таблиц. Приведены чертежи вариантов заданий, предлагаемых для выполнения графических работ с алгоритмами решения, контрольное тестирование с ответами и решебник для самопроверки. Материал по проекционному черчению адресован абитуриентам архитектурного факультета, для подготовительных отделений и лицейских классов БНТУ, а также может быть использован теми кто решил самостоятельно осваивать непростое искусство черчения.

Геометрические тела, Часть 2, Многогранники и тела вращения, Приходько В.Н., 2014


ГЕОМЕТРИЧЕСКИЕ ТЕЛА.
Геометрическим телом называется некоторая замкнутая часть пространства, ограниченная плоскими или кривыми поверхностями. Геометрические тела разделяются на многогранники и криволинейные, т.е. ограниченные кривыми поверхностями. Многогранники - геометрические тела, ограниченные со всех сторон плоскими многоугольниками. Плоские фигуры, ограничивающие многогранник, называются гранями. Грани пересекаются между собой по прямым линиям, называемым ребрами многогранника. Ребра пересекаются в точках, именуемых вершинами многогранника.


СОДЕРЖАНИЕ.
ВВЕДЕНИЕ.    
ПРИЗМА.    
ПИРАМИДА.    
ЦИЛИНДР.    
КОНУС.    
Аксонометрические проекции окружности и тел вращения.    
Алгоритм построения правильных многоугольников.    
ТАБЛИЦЫ «Аксонометрические проекции плоских фигур и многогранников».    
ТАБЛИЦЫ «Пересечение геометрических тел плоскостями».    
Трехгранные призма и пирамида.            
Четырехгранные призма и пирамида (в основании квадрат).    
Четырехгранные призма и пирамида (в основании ромб).    
Пятигранные призма и пирамида.            
Шестигранные призма и пирамида.    
Цилиндр и конус.    
ЗАДАНИИ №1 «Чертеж, аксонометрия, развертка усеченных пятигранных призмы,пирамиды».
ЗАДАНИИ №2 «Чертеж, аксонометрия, развертка цилиндра и конуса».    
АЛГОРИТМЫ ПОСТРОЕНИЯ «Сечение геометрического тела плоскостью, натуральная величина сечения способом совмещения, аксонометрическая проекция и развертка».    
Призма.    
Пирамида.    
Цилиндр.    
Конус.    
АЛГОРИТМ ПОСТРОЕНИЯ ВЫРЕЗА В ГЕОМЕТРИЧЕСКИХ ТЕЛАХ.
Призма.    
Пирамида.                            
Конус.    
ИНДИВИДУАЛЬНЫЕ ЗАДАНИЯ №1 «Построить третью проекцию по двум заданным, проекцию точки А и аксонометрию».    
Призма.    
Пирамида.    
Цилиндр.    
Конус.    
ИНДИВИДУАЛЬНОЕ ЗАДАНИЯ №2 «Построить три проекции по аксонометрии».    
Призма.    
Пирамида.            
ТЕСТИРОВАНИЕ.    
Призма.    
Пирамида.    
Цилиндр.
Конус.    
ОТВЕТЫ по тестированию.        
РЕШЕБНИК для самопроверки индивидуального задания №2.    
Призма.            
Пирамида.    
Цилиндр.    
Конус.    
ИНДИВИДУАЛЬНЫЕ ЗАДАНИЯ №3 «Моделирование формы».    
Алгоритм построения чертежа модели.    
ЛИТЕРАТУРА.   



Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Геометрические тела, часть 2, Многогранники и тела вращения, Приходько В.Н., 2014 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать pdf
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.Купить эту книгу



Скачать - pdf - Яндекс.Диск.
Дата публикации:





Хештеги: :: :: ::


Следующие учебники и книги:
Предыдущие статьи: