Cтереометрия 10, Калинин А.Ю., Терешин Д.А., 1996

Cтереометрия 10, Калинин А.Ю., Терешин Д.А., 1996.

Книга содержит материал первой части курса стереометрии для классов с углубленным изучением математики, соответствующий курсу десятого класса. Подробно изложен теоретический материал и разобраны примеры решения задач. В каждой главе приводятся задачи для самостоятельного решения, к которым даны ответы и указания. Наряду со «стандартными» широко представлены «нестандартные» задачи, в том числе задачи математических олимпиад разного уровня и вступительных экзаменов в ведущие российские вузы. В отдельную главу выделено систематическое обсуждение некоторых важных идей и методов решения задач.
Для учащихся школ с углубленным изучением математики, а также абитуриентов технических вузов.

Cтереометрия 10, Калинин А.Ю., Терешин Д.А., 1996

Игра в геометрию.

Изучая планиметрию, Вы уже несколько лет играли в увлекательную игру под названием «геометрия». Правила этой игры вырабатывались тысячелетиями и окончательно сложились лишь к концу прошлого века. Их обсуждение естественно начать с вопроса: а что такое геометрия? Как это, быть может, ни странно, на этот вопрос очень трудно дать однозначный ответ. Геометрия многолика, и в школе изучается лишь малая часть того, что в современной математике принято называть геометрией. Но дело не только в этом. Даже если мы ограничимся рассмотрением планиметрии и стереометрии в традиционном их понимании, наша задача вряд ли будет существенно облегчена. С одной стороны, геометрия — это аксиоматическая теория, которая изучает объекты абстрактной природы, находящиеся в определенных отношениях друг с другом. С другой стороны, геометрия изучает размеры и форму реальных тел. Для того чтобы понять, как соотносятся между собой две эти ипостаси геометрии, коротко проследим исторический путь ее развития.

Всякая естественная наука начинается с установления некоторых фактов. Затем, по мере их накопления, вырабатываются законы и теории, превращающие науку в стройную систему. Так развивалась и геометрия. Еще в древнем Египте и Вавилоне были известны многие содержательные факты, такие, как теорема Пифагора или формула для вычисления объема пирамиды. Эти результаты были получены опытным путем, их справедливость подтверждалась множеством экспериментов. Количество подмеченных геометрических закономерностей росло, и возникла задачу систематизации накопленных знаний.

К началу III в. до н. э. окончательно оформилась идея построения научной теории, согласно которой отправным пунктом теории должны служить положения, основанные на опытных данных и поэтому не вызывающие сомнения. Все остальные положения должны быть получены из~них логическим (дедуктивным) путем. Здание логики уже было возведено, в основном благодаря работам древнегреческого философа Аристотеля (384—322 гг. до н. э.). Им же впервые была ясно сформулирована идея построения научной теории. Применительно к геометрии ее реализовал Евклид (III в. до н. э.) в своих «Началах». Опираясь на опыты своих предшественников, он сформулировал несколько утверждений (аксиом, или постулатов), принимаемых без доказательства. Из аксиом выводились их логические следствия — теоремы. Так геометрия превратилась в дедуктивную науку. Суть дедуктивного метода блестяще передал Артур Конан Дойл словами своего излюбленного героя Шерлока Холмса: «...человека, умеющего наблюдать и анализировать, обмануть просто невозможно. Его выводы будут безошибочны, как теоремы Евклида... По одной капле воды... человек, умеющий мыслить логически, может сделать вывод о возможности существования Атлантического океана или Ниагарского водопада, даже если он не видел ни того, ни другого и никогда о них не слышал. Всякая жизнь — это огромная цепь причин и следствий, и природу ее мы можем познать по одному звену».1




Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Cтереометрия 10, Калинин А.Ю., Терешин Д.А., 1996 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать djvu
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.Купить эту книгу



Скачать - djvu - Яндекс.Диск.



Дата публикации:





Хештеги: :: :: ::