В сборник включено свыше 4000 задач и упражнений по важнейшим разделам математического анализа: введение в анализ; дифференциальное исчисление фукнций одной переменной; неопределенный и определенный интегралы; ряды; дифференциальное исчисление функций нескольких переменных; интегралы, зависящие от параметра; кратные и криволинейные интегралы. Почти ко всем задачам даны ответы. В приложении помешены (таблицы.
Для студентов физических и механико-математических специальностей высших учебных заведений.
Сборник задач и упражнений по математическому анализу: Учебное пособие. - 13-е изд., испр. - М.: Изд-во Моск. ун-та, ЧеРо, 1997. - 624 с.
ISBN 5-211-03645-Х
УДК 517(075.8)
ББК 22.161
Д30
Купить книгу Сборник задач и упражнений по математическому анализу - Демидович Б.П. - 1997
ОГЛАВЛЕНИЕ
ЧАСТЬ ПЕРВАЯ
ФУНКЦИИ ОДНОЙ НЕЗАВИСИМОЙ ПЕРЕМЕННОЙ
Отдел I. Введение в анализ
§ 1. Вещественные числа
§ 2. Теория последовательностей
§ 3. Понятие функции
§ 4. Графическое изображение функции
§ 5. Предел функции
§ 6. О-символика
§ 7. Непрерывность функции
§ 8. Обратная функция. Функции, заданные параметрически
§ 9. Равномерная непрерывность функции
§ 10. Функциональные уравнения
Отдел II. Дифференциальное исчисление функций одной переменной
§ 1. Производная явной функции
§ 2. Производная обратной функции. Производная функции, заданной параметрически. Производная функции, заданной в неявном виде
§ 3. Геометрический смысл производной
§ 4. Дифференциал функции
§ 5. Производные и дифференциалы высших порядков
§ 6. Теоремы Ролля, Лагранжа и Коши
§ 7. Возрастание и убывание функции. Неравенства
§ 8. Направление вогнутости. Точки перегиба
§ 9. Раскрытие неопределенностей
§ 10. Формула Тейлора.
§ 11. Экстремум функции. Наибольшее и наименьшее значения функции
§ 12. Построение графиков функции по характерным точкам
§ 13. Задачи на максимум и минимум функций
§ 14. Касание кривых. Круг кривизны. Эволюта
§ 15. Приближенное решение уравнений
Отдел III Неопределенный интеграл
§ 1. Простейшие неопределенные интегралы
§ 2. Интегрирование рациональных функций
§ 3. Интегрирование некоторых иррациональных функций
§ 4. Интегрирование тригонометрических функций
§ 5. Интегрирование различных трансцендентных функций
§ 6. Разные примеры на интегрирование функций
Отдел IV. Определенный интеграл
§ 1. Определенный интеграл как предел суммы
§ 2. Вычисление определенных интегралов с помощью неопределенных
§ 3. Теоремы о среднем
§ 4. Несобственные интегралы
§ 5. Вычисление площадей
§ 6. Вычисление длин дуг
§ 7. Вычисление объемов
§ 8. Вычисление площадей поверхностей вращения
§ 9. Вычисление моментов. Координаты центра тяжести
§ 10. Задачи из механики и физики
§ 11. Приближенное вычисление определенных интегралов
Отдел V. Ряды
§ 1. Числовые ряды. Признаки сходимости знакопостоянных рядов
§ 2. Признаки сходимости знакопеременных рядов
§ 3. Действия над рядами
§ 4. Функциональные ряды
§ 5. Степенные ряды
§ 6. Ряды Фурье
§ 7. Суммирование рядов
§ 8. Нахождение определенных интегралов с помощью рядов
§ 9. Бесконечные произведения
§ 10. Формула Стирлинга
§ 11. Приближение непрерывных функций многочленами
ЧАСТЬ ВТОРАЯ
ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ
Отдел VI. Дифференциальное исчисление функций нескольких переменных
§ 1. Предел функции. Непрерывность
§ 2. Частные производные. Дифференциал функции
§ 3. Дифференцирование неявных функций
§ 4. Замена переменных
§ 5. Геометрические приложения
§ 6. Формула Тейлора
§ 7. Экстремум функции нескольких переменных
Отдел VII. Интегралы, зависящие от параметра
§ 1. Собственные интегралы, зависящие от параметра
§ 2. Несобственные интегралы, зависящие от параметра. Равномерная сходимость интегралов
§ 3. Дифференцирование н интегрирование несобственных интегралов под знаком интеграла
§ 4. Эйлеровы интегралы
§ 5. Интегральная формула Фурье
Отдел VIII. Кратные и криволинейные интегралы
§ 1. Двойные интегралы
§ 2. Вычисление площадей
§ 3. Вычисление объемов
§ 4. Вычисление площадей поверхностей
§ 5. Приложения двойных интегралов к механике
§ 6. Тройные интегралы
§ 7. Вычисление объемов с помощью тройных интегралов
§ 8. Приложения тройных интегралов к механике
§ 9. Несобственные двойные и тройные интегралы
§ 10. Многократные интегралы
§ 11. Криволинейные интегралы
§ 12. Формула Грина.
§ 13. Физические приложения криволинейных интегралов
§ 14. Поверхностные интегралы
§ 15. Формула Стокса
§ 16. Формула Остроградского
§ 17. Элементы теории поля
Ответы
Купить книгу Сборник задач и упражнений по математическому анализу - Демидович Б.П. - 1997
По кнопкам выше и ниже «Купить бумажную книгу» и по ссылке «Купить» можно купить эту книгу с доставкой по всей России и похожие книги по самой лучшей цене в бумажном виде на сайтах официальных интернет магазинов Лабиринт, Озон, Буквоед, Читай-город, Литрес, My-shop, Book24, Books.ru.
По кнопке «Купить и скачать электронную книгу» можно купить эту книгу в электронном виде в официальном интернет магазине «Литрес», и потом ее скачать на сайте Литреса.
По кнопке «Найти похожие материалы на других сайтах» можно найти похожие материалы на других сайтах.
On the buttons above and below you can buy the book in official online stores Labirint, Ozon and others. Also you can search related and similar materials on other sites.
Хештеги: #сборник задач :: #Демидович :: #скачать :: #математический анализ :: #мат-анализ :: #сборник упражнений :: #1997 :: #учебник :: #пособие :: #книга :: #введение в анализ :: #производная :: #интеграл :: #О-символика :: #функция :: #отображение :: #действительные числа :: #комплексные числа :: #векторное пространство :: #метрическое пространство :: #предел последовательности :: #предел :: #функции :: #непрерывность функции :: #теорема Ролля :: #теорема Лагранжа :: #теорема Коши :: #неравенства :: #раскрытие неопределенностей :: #формула Тейлора :: #экстремум функции :: #неопределенный интеграл :: #интеграл Римана :: #интеграл Стилтьеса :: #ряды :: #признак сходимости :: #степенные ряды :: #ряды Фурье :: #дифференциал функции :: #экстремум :: #кратный интеграл :: #криволинейный интеграл :: #собственный интеграл :: #несобственный интеграл :: #эйлеровы интегралы :: #интегральная формула Фурье :: #интеграл Римана :: #формула Остроградского :: #формула Грина :: #формула Стокса :: #векторный анализ
Смотрите также учебники, книги и учебные материалы:
- Задачи вступительных экзаменов в МГУ по математике, Воронин В.П., Федотов М.В., 2000
- Подготовка к вступительным экзаменам в МГУ, Задачи устного экзамена по математике, Федотов М.В., Хайлов Е.Н.
- Нестандартные задачи по математике - Задачи с целыми числами, учебное пособие, Галкин Е.В. - 2005
- Как решать задачи по математике на вступительных экзаменах, Мельников И.И., Сергеев И.Н., 1990
- Полный сборник решений задач для поступающих в ВУЗы, группа В, Сканави М.И., 2003
- Полный сборник решений задач для поступающих в ВУЗы, группа Б, книга 2, Сканави М.И., 2003
- Полный сборник решений задач для поступающих в ВУЗы, группа Б, книга 1, Сканави М.И., 2003
- Полный сборник решений задач для поступающих в ВУЗы, группа А, Сканави М.И., 2003