Книга посвящена теории квазилинейных систем дифференциальных уравнений, описывающих законы сохранения различных физических процессов с учетом диссипации и без нее. В основе ее лежит специальный курс лекций «Обобщенные решения законов сохранения», читавшийся автором на протяжении ряда лет студентам специальности «Прикладная математика* в Обнинском государственном университете атомной энергетики. Книга вводит в курс современных математических методов исследования задач, имеющих обобщенные (разрывные) решения, моделями которых служат эволюционные задачи механики сплошных сред. В ней дано математическое обоснование широкого спектра этих задач: от частных задач, описывающих одномерные изэнтропические течения газа, до общих одномерных и пространственных задач, описывающих течение плазмы. Обсуждаются вопросы единственности автомодельных решений квазилинейных систем, связанные с теорией конгруэнций в римановом пространстве. Для научных работников, преподавателей, аспирантов и студентов, занимающихся дифференциальными уравнениями, математической физикой, математическими исследованиями в механике сплошной среды.
