Высшая математика, Шамолин М.В., 2008.
Книга представляет собой собственное изложение автора прослушанных им лекций на механико-математическом факультете МГУ имени М.В. Ломоносова по различным разделам современной математики. Эти лекционные курсы читались многими выдающимися профессорами, за что автор выражает безмерную благодарность.
Данный учебник содержит введение в такие разделы, как аналитическая геометрия, линейная алгебра, математический анализ, дифференциальные уравнения, теория функций комплексного переменного, операционное исчисление, теория вероятностей, математическая статистика, оптимальное управление.
Основная часть книги, а также приложение 1 рассчитаны на студентов, аспирантов ВУЗов, а также для всех интересующихся математикой. Приложение 2 рассчитано, в основном, на специалистов в области качественной теории дифференциальных уравнений и, в некотором смысле, требует дополнительных знаний.
высшая математика
Сборник задач по высшей математике, 2 курс, Лунгу К.Н., Письменный Д.Т., Шевченко Ю.А., 2007
Сборник задач по высшей математике, 2 курс, Лунгу К.Н., Письменный Д.Т., Шевченко Ю.А., 2007.
Книга является второй частью вышедшего ранее и выдержавшего несколько изданий «Сборника задач по высшей математике». Сборник содержит три с лишним тысячи задач по высшей математике, охватывая материал, обычно изучаемый во II-IV семестрах технических вузов.
По сути, эта книга — удобный самоучитель, который позволит студенту быстро и эффективно подготовиться к экзаменационной сессии. Этому способствуют необходимые теоретические пояснения ко всем разделам сборника, детально разобранные типовые задачи, изрядное количество разнообразных заданий различных уровней сложности для самостоятельного решения, а также наличие контрольных работ, устных задач и «качественных» вопросов.
Книга будет полезна студентам младших курсов и преподавателям вузов для проведения семинарских занятий.
Купить бумажную или электронную книгу и скачать и читать Сборник задач по высшей математике, 2 курс, Лунгу К.Н., Письменный Д.Т., Шевченко Ю.А., 2007Книга является второй частью вышедшего ранее и выдержавшего несколько изданий «Сборника задач по высшей математике». Сборник содержит три с лишним тысячи задач по высшей математике, охватывая материал, обычно изучаемый во II-IV семестрах технических вузов.
По сути, эта книга — удобный самоучитель, который позволит студенту быстро и эффективно подготовиться к экзаменационной сессии. Этому способствуют необходимые теоретические пояснения ко всем разделам сборника, детально разобранные типовые задачи, изрядное количество разнообразных заданий различных уровней сложности для самостоятельного решения, а также наличие контрольных работ, устных задач и «качественных» вопросов.
Книга будет полезна студентам младших курсов и преподавателям вузов для проведения семинарских занятий.
Сборник задач по высшей математике, 1 курс, Лунгу К.Н., Письменный Д.Т., Федин С.Н., Шевченко Ю.А., 2008
Сборник задач по высшей математике, 1 курс, Лунгу К.Н., Письменный Д.Т., Федин С.Н., Шевченко Ю.А., 2008.
Сборник содержит свыше трех с половиной тысяч задач по высшей математике. Ко всем разделам книги даны необходимые теоретические пояснения.
Детально разобраны типовые задачи, приведено изрядное количество разнообразных заданий различных уровней сложности для самостоятельного решения. Наличие в сборнике контрольных работ, устных задач и «качественных» вопросов позволит студенту подготовиться к экзаменационной сессии. Книга охватывает материал по линейной алгебре, аналитической геометрии, основам математического анализа и комплексным числам.
Книга будет полезна студентам младших курсов и преподавателям вузов.
Купить бумажную или электронную книгу и скачать и читать Сборник задач по высшей математике, 1 курс, Лунгу К.Н., Письменный Д.Т., Федин С.Н., Шевченко Ю.А., 2008Сборник содержит свыше трех с половиной тысяч задач по высшей математике. Ко всем разделам книги даны необходимые теоретические пояснения.
Детально разобраны типовые задачи, приведено изрядное количество разнообразных заданий различных уровней сложности для самостоятельного решения. Наличие в сборнике контрольных работ, устных задач и «качественных» вопросов позволит студенту подготовиться к экзаменационной сессии. Книга охватывает материал по линейной алгебре, аналитической геометрии, основам математического анализа и комплексным числам.
Книга будет полезна студентам младших курсов и преподавателям вузов.
Основы высшей математики, Шипачев В.С., Тихонов А.Н., 1994
Основы высшей математики, Шипачев В.С., Тихонов А.Н., 1994.
В пособии изложен общий курс математики для студентов втузов. Основная особенность книги — сочетание необходимого теоретического материала с широким использованием методов решения основных типов задач по всем разделам курса. Пособие отличается высоким уровнем строгости и методической продуманностью изложения, точностью формулировок основных понятий и теорем, краткостью и доступностью доказательств.
Первое издание вышло в 1989 г.
Скачать и читать Основы высшей математики, Шипачев В.С., Тихонов А.Н., 1994В пособии изложен общий курс математики для студентов втузов. Основная особенность книги — сочетание необходимого теоретического материала с широким использованием методов решения основных типов задач по всем разделам курса. Пособие отличается высоким уровнем строгости и методической продуманностью изложения, точностью формулировок основных понятий и теорем, краткостью и доступностью доказательств.
Первое издание вышло в 1989 г.
Высшая математика для экономистов, Кремер Н.Ш., 2010
Высшая математика для экономистов, Кремер Н.Ш., 2010.
Эта книга — не только учебник, но и краткое руководство к решению задач по основам высшей математики. Излагаемые в достаточно краткой форме с необходимыми обоснованиями основные положения учебного материала сопровождаются большим количеством задач, приводимых с решениями и для самостоятельной работы. Там, где это возможно, раскрывается экономический смысл математических понятий, приводятся простейшие приложения высшей математики в экономике (балансовые модели, предельный анализ, эластичность функций, производственные функции, модели динамики и т.л.).
Для студентов и аспирантов экономических вузов, экономистов и лиц, занимающихся самообразованием.
Купить бумажную или электронную книгу и скачать и читать Высшая математика для экономистов, Кремер Н.Ш., 2010Эта книга — не только учебник, но и краткое руководство к решению задач по основам высшей математики. Излагаемые в достаточно краткой форме с необходимыми обоснованиями основные положения учебного материала сопровождаются большим количеством задач, приводимых с решениями и для самостоятельной работы. Там, где это возможно, раскрывается экономический смысл математических понятий, приводятся простейшие приложения высшей математики в экономике (балансовые модели, предельный анализ, эластичность функций, производственные функции, модели динамики и т.л.).
Для студентов и аспирантов экономических вузов, экономистов и лиц, занимающихся самообразованием.
Практические занятия по высшей математике, часть 5, Каплан И.А., 1972
Практические занятия по высшей математике, Часть 5, Каплан И.А., 1972.
Книга содержит подробный разбор и решение типовых задач по таким разделам высшей математики: векторный анализ, алгебра матриц и их приложений к решению задач линейной алгебры, линейные дифференциальные уравнения с частными производными первого порядка, решение алгебраических и трансцендентных уравнений.
Книга рассчитана на студентов высших технических учебных заведений и может быть полезной также преподавателям, ведущим практические занятия.
Скачать и читать Практические занятия по высшей математике, часть 5, Каплан И.А., 1972Книга содержит подробный разбор и решение типовых задач по таким разделам высшей математики: векторный анализ, алгебра матриц и их приложений к решению задач линейной алгебры, линейные дифференциальные уравнения с частными производными первого порядка, решение алгебраических и трансцендентных уравнений.
Книга рассчитана на студентов высших технических учебных заведений и может быть полезной также преподавателям, ведущим практические занятия.
Практические занятия по высшей математике, Каплан И.А., 1967
Практические занятия по высшей математике, Каплан И.А., 1967.
В книге разобраны и подробно решены типовые задачи по аналитической геометрии на плоскости и в пространстве, дифференциальному и интегральному исчислениям и по интегрированию дифференциальных уравнений.
Из задач, помещенных для самостоятельного решения, многие снабжены указаниями, промежуточными результатами и ответами.
Книга рассчитана на студентов высших технических учебных заведений, может быть полезна также преподавателям, ведущим практические занятия.
Скачать и читать Практические занятия по высшей математике, Каплан И.А., 1967В книге разобраны и подробно решены типовые задачи по аналитической геометрии на плоскости и в пространстве, дифференциальному и интегральному исчислениям и по интегрированию дифференциальных уравнений.
Из задач, помещенных для самостоятельного решения, многие снабжены указаниями, промежуточными результатами и ответами.
Книга рассчитана на студентов высших технических учебных заведений, может быть полезна также преподавателям, ведущим практические занятия.
Справочное пособие по высшей математике, том 5, Дифференциальные уравнения в примерах и задачах, Боярчук А.К., Головач Г.Г., 2001
Справочное пособие по высшей математике, Том 5, Дифференциальные уравнения в примерах и задачах, Боярчук А.К., Головач Г.Г., 2001.
«Справочное пособие по высшей математике» выходит в пяти томах и представляет собой новое, исправленное и существенно дополненное издание «Справочного пособия по математическому анализу» тех же авторов. В новом издании пособие охватывает три крупных раздела курса высшей математики — математический анализ, теорию дифференциальных уравнений, теорию функций комплексной переменной.
Том 5 охватывает все разделы учебных программ по дифференциальным уравнениям для университетов и технических вузов с углубленным изучением математики. Наряду с минимальными теоретическими сведениями в нем содержится более семисот детально разобранных примеров. Среди вопросов, нестандартных для такого рода пособий, следует отметить примеры по теории продолжимости решения задачи Коши, нелинейным уравнениям в частных производных первого порядка, некоторым численным методам решения дифференциальных уравнений.
Пособие предназначено для студентов, преподавателей и работников физико-математических, экономических и инженерно-технических специальностей, специалистов по прикладной математике, а также лиц, самостоятельно изучающих высшую математику.
Скачать и читать Справочное пособие по высшей математике, том 5, Дифференциальные уравнения в примерах и задачах, Боярчук А.К., Головач Г.Г., 2001«Справочное пособие по высшей математике» выходит в пяти томах и представляет собой новое, исправленное и существенно дополненное издание «Справочного пособия по математическому анализу» тех же авторов. В новом издании пособие охватывает три крупных раздела курса высшей математики — математический анализ, теорию дифференциальных уравнений, теорию функций комплексной переменной.
Том 5 охватывает все разделы учебных программ по дифференциальным уравнениям для университетов и технических вузов с углубленным изучением математики. Наряду с минимальными теоретическими сведениями в нем содержится более семисот детально разобранных примеров. Среди вопросов, нестандартных для такого рода пособий, следует отметить примеры по теории продолжимости решения задачи Коши, нелинейным уравнениям в частных производных первого порядка, некоторым численным методам решения дифференциальных уравнений.
Пособие предназначено для студентов, преподавателей и работников физико-математических, экономических и инженерно-технических специальностей, специалистов по прикладной математике, а также лиц, самостоятельно изучающих высшую математику.
Другие статьи...
- Справочное пособие по высшей математике, том 4, Функции комплексного переменного, теория и практика, Боярчук А.К., 2001
- Справочное пособие по высшей математике, том 1, математический анализ, Ляшко И.И., Боярчук А.К., Гай Я.Г., Головач Г.П., 2001
- Сборник задач по высшей математике, Минорский В.П., 2006
- Высшая математика в упражнениях и задачах, часть 2, Данко П.Е., Попов А.Г., Кожевникова Т.Я., 2003
- Высшая математика в упражнениях и задачах, часть 1, Данко П.Е., Попов А.Г., Кожевникова Т.Я., 2003
- Курс высшей математики, Шипачев В.С., 2009
- Практическое пособие по высшей математике, Баранова Е., Васильева Н., Федотов В., 2013
- Высшая математика, уравнения математической физики, Сборник задач с решениями, Крупин В.Г., Павлов А.Л., Попов Л.Г., 2011
Показана страница 16 из 41