Основные задачи математической физики, Стеклов В.А., 1983.
Книга написана выдающимся советским математиком В. А. Стекловым. Первая часть ее посвящена классической задаче Штурма-Лиувилля. Здесь, в частности, доказывается, что собственные функции задачи Штурма-Лиувилля в случае трех классических типов граничных условий образуют ортонормированный базис пространства L_2 и устанавливаются точные теоремы (теоремы Стеклова) о разложении функций в ряды Фурье по этому базису.
Во второй части книги изучаются основные краевые задачи для трехмерного эллиптического уравнения. В отличие от обычных методов, решения краевых задач представляются в виде рядов по некоторым специальным функциям (функциям Стеклова). Интерес к разложениям в ряды по функциям Стеклова, являющимся далеко идущим обобщением шаровых функций, решений краевых задач для эллиптических уравнений становится все большим и большим.
Первое издание (в двух томах) вышло в 1922, 1923 гг.
Книга может быть полезной для аспирантов и научных работников в области математики и прикладных наук. Она может быть использована и студентами.