Функции комплексного переменного: теория и практика - Справочное пособие по высшей математике. Том 4 - Боярчук А.К. - 2001
Том 4 является логическим продолжением трех предыдущих ориентированных на практику томов и содержит более четырехсот подробно решенных задач, но при этом отличается более детальным изложением теоретических вопросов и может служить самостоятельным замкнутым курсом теории функций комплексного переменного. Помимо вопросов, обычно включаемых в курсы такого рода, в книге излагается ряд нестандартных - таких, как интеграл Ньютона-Лейбница и производная Ферма-Лагранжа.
Пособие предназначено для студентов, преподавателей и работников физико-математических, экономических и инженерно-технических специальностей, специалистов по прикладной математике, а также лиц, самостоятельно изучающих высшую математику.
ряд Лорана
Функции комплексного переменного: теория и практика, справочное пособие по высшей математике, том 4, Боярчук А.К., 2001
Скачать и читать Функции комплексного переменного: теория и практика, справочное пособие по высшей математике, том 4, Боярчук А.К., 2001Теория функции комплексного переменного, Краткий курс, Хапланов М.Г., 1965
Теория функции комплексного переменного - Краткий курс - Хапланов М.Г. - 1965
В основу книги положена мысль о том, что цель включения теории функций комплексного переменного в учебный план педагогических институтов - углубить у будущих учителей математики знание элементарных функций, изучаемых и средней школе, и разъяснить им роль комплексных чисел в математике и ее приложениях. Поэтому большое внимание уделено элементарным функциям, точкам их разветвления, римановым поверхностям и конформным отображениям, совершаемым с помощью простейших функций.
В настоящей книге предполагается, что читатель уже изучал теорию комплексных чисел. Все же, чтобы облегчить ссылки, приводятся основные положения этой теории в такой форме, в какой они дальше будут использованы.
Купить бумажную или электронную книгу и скачать и читать Теория функции комплексного переменного, Краткий курс, Хапланов М.Г., 1965В основу книги положена мысль о том, что цель включения теории функций комплексного переменного в учебный план педагогических институтов - углубить у будущих учителей математики знание элементарных функций, изучаемых и средней школе, и разъяснить им роль комплексных чисел в математике и ее приложениях. Поэтому большое внимание уделено элементарным функциям, точкам их разветвления, римановым поверхностям и конформным отображениям, совершаемым с помощью простейших функций.
В настоящей книге предполагается, что читатель уже изучал теорию комплексных чисел. Все же, чтобы облегчить ссылки, приводятся основные положения этой теории в такой форме, в какой они дальше будут использованы.