Содержание этой монографии распределяется следующим образом. Первый том содержит алгебраическое введение и теорию проективных пространств, излагаемую в несколько большем объеме, чем это действительно нужно в самой алгебраической геометрии. Второй том посвящен алгебраическим многообразиям в проективном пространстве. В нем излагается общая теория, а также подробно исследуются квадратичные и грассмановы многообразия, которые дают богатый материал, иллюстрирующий общие методы. В третьем излагается бирациональная теория алгебраических многообразий.
