Глава 1. Особенности регрессионного анализа для стохастических объясняющих переменных.
Как уже было указано во Введении, в начальных курсах эконометрики первоочередное внимание уделяется статистическим выводам в рамках классической нормальной линейной модели наблюдений в которой предполагается, что значения объясняющих переменных хt1,х,t2, ...,xtp, t=1,2, ..., n , фиксированы, а случайные составляющие Е1, E2, ..., E11. ("ошибки") являются независимыми случайными величинами, имеющими одинаковое нормальное распределение с нулевым математическим ожиданием и конечной дисперсией (такие предположения об ошибках мы называем "стандартными"). Далее анализируются последствия различного типа нарушений таких предположений об ошибках и рассматриваются методы коррекции статистических выводов о коэффициентах модели при наличии соответствующих нарушений стандартных предположений.
