Общая алгебра - Учебник - Курош А.Г. - 1970
Имя выдающегося советского алгебраиста Александра Геннадиевича Куроша широко известно математикам всего мира. Его монографии «Теория групп» и «Лекции по общей алгебре» , переведенные на многие языки, стали настольными книгами каждого алгебраиста.
В 1969 году А. Г. Курош начал читать на механико-математическом факультете Московского университета специальный курс «Общая алгебра». Цель этого курса состояла в том, чтобы обоснованно предложить один из возможных путей дальнейшего развития общей алгебры - заполнение имеющегося разрыва между классическими разделами (теория групп, теория колец и др.) и новыми (теория универсальных алгебр, теория категорий). Написанный материал был издан в 1970 году.
В настоящей книге но существу повторяется это издание с незначительной редакционной правкой. Добавлена лишь библиография, посвященная таким алгебраическим образованиям, которые упоминаются в книге, но которые пока не принято называть классическими (например, полугруды, кольцоиды, почш-кольца, полукольца, мультиоператорные группы и кольца и др.)
Книга написана так легко и прозрачно, что ее может читать всякий, владеющий обычным университетским курсом высшей алгебры.
Курош
Курс высшей алгебры, учебник, Курош А.Г., 1968
Курс высшей алгебры - Учебник - Курош А.Г. - 1968
Книга обеспечивает весь обязательный университетский курс высшей алгебры, а не только его первые два семестра. В книгу включено несколько новых глав. Одна из них посвящена основам теории групп, а остальные относятся к линейной алгебре - теория линейных пространств, теория евклидовых пространств и жордановой нормальной формы матрицы.
Студентам будет удобно иметь весь обязательный материал собранным в одном учебнике и изложенным единым стилем.
Купить бумажную или электронную книгу и скачать и читать Курс высшей алгебры, учебник, Курош А.Г., 1968Книга обеспечивает весь обязательный университетский курс высшей алгебры, а не только его первые два семестра. В книгу включено несколько новых глав. Одна из них посвящена основам теории групп, а остальные относятся к линейной алгебре - теория линейных пространств, теория евклидовых пространств и жордановой нормальной формы матрицы.
Студентам будет удобно иметь весь обязательный материал собранным в одном учебнике и изложенным единым стилем.
Курош
Предыдущая
Следующая
Показана страница 2 из 2