Монография посвящена разработке алгебраической, геометрической и аналитической техники в дифференциальных уравнениях с частными производными, связанной с многогранником Ньютона символа оператора. Более элементарная первая часть книги, посвященная многоугольнику Ньютона (гл. I—IV), содержит, тем не менее, законченные результаты и ориентирована на широкий круг читателей. Вторая часть (гл. IV-VII), посвященная многограннику Ньютона, содержит более сложные конструкции.
В центре внимания в книге три задачи о дифференциальных уравнениях: специальный класс гипоэллиптических операторов, определяемый по многограннику Ньютона, обобщенные операторы главного типа, которые определяются с помощью старшей части, ассоциированной с многогранником Ньютона, и энергетические оценки в задаче Коши, в которых также существенную роль играет многогранник Ньютона.
Для специалистов по дифференциальным уравнениям в частных производных. Книга доступна математикам — аспирантам и студентам старших курсов.
