Высшая математика, Теория и практика, Курс для экономистов, Часть 2, Ринчино А.Л., 2010.
Книга является продолжением учебного пособия «Высшая математика: теория и практика. Часть 1». Данное издание содержит необходимый материал по 3-м разделам курса высшей математики: изложены основы дифференциального и интегрального исчисления, теории функций нескольких переменных.
Материал каждой темы соответствует содержанию лекционного занятия. Все темы снабжены соответствующими практикумами, материал которых, в свою очередь, соответствует практическим (семинарским) занятиям. Всего приводится более 800 задач.
Книга, несомненно, будет полезна студентам очных, заочных и вечерних форм обучения, преподавателям высших учебных заведений.
формула Симпсона
Высшая математика, теория и практика, Курс для экономистов, часть 2, Ринчино А.Л., 2010
Скачать и читать Высшая математика, теория и практика, Курс для экономистов, часть 2, Ринчино А.Л., 2010Введение в высшую математику - Черкасов А.Н.
Название: Введение в высшую математику. 1964.
Автор: Черкасов А.Н.
Книга «Введение в высшую математику» предназначается главным образом для самообразования. Она также годится для студентов тех учебных заведений, в которых на математику отведено 120-150 часов. Автор надеется, что, кроме того, эта книга может быть использована и другими учебными заведениями в качестве материала, развивающего математическую интуицию, необходимую при чтении учебников математического анализа. В этой книге далеко не все доказывается, однако нельзя сказать, чтобы в книге давалась только рецептура.
Большое внимание обращено на приложения дифференциального и интегрального исчислений.
Неопределенный интеграл дается в минимальном объеме, необходимом для решения задач на приложения определенного интеграла.
Скачать и читать Введение в высшую математику - Черкасов А.Н.Автор: Черкасов А.Н.
Книга «Введение в высшую математику» предназначается главным образом для самообразования. Она также годится для студентов тех учебных заведений, в которых на математику отведено 120-150 часов. Автор надеется, что, кроме того, эта книга может быть использована и другими учебными заведениями в качестве материала, развивающего математическую интуицию, необходимую при чтении учебников математического анализа. В этой книге далеко не все доказывается, однако нельзя сказать, чтобы в книге давалась только рецептура.
Большое внимание обращено на приложения дифференциального и интегрального исчислений.
Неопределенный интеграл дается в минимальном объеме, необходимом для решения задач на приложения определенного интеграла.