Элементы симметрийного анализа дифференциальных уравнений механики сплошной среды, Монография, Чиркунов Ю.А., 2012.
Монография посвящена развитию методов симметрийного (группового) анализа дифференциальных уравнений и их применению к исследованию уравнений механики сплошной среды. С помощью метода A-операторов найдены новые законы сохранения для уравнений газовой динамики. Приведен новый алгоритм групповой классификации системы дифференциальных уравнений; его эффективность и преимущества показаны на примерах уравнений газовой динамики и уравнений нелинейных продольных колебаний вязкоупругого стержня в модели Кельвина. Выполнена групповая классификация систем линейных дифференциальных уравнений первого порядка с двумя неизвестными функциями двух переменных. Решена проблема x-автономности и линейной автономности основной алгебры Ли системы линейных дифференциальных уравнений первого порядка; результаты для x-автономности переносятся на квазилинейную систему. Получены структурные теоремы о контактных и точечных преобразованиях, о законах сохранения для квазилинейных дифференциальных уравнений второго порядка. Исследованы обладающие максимальной симметрией обобщенное уравнение Дарбу и уравнение Овсянникова, описывающие установившиеся колебания в непрерывно-неоднородных средах. Проведен симметрийный анализ уравнений Ламе классической динамической и статической теории упругости, уравнения, описывающего нелинейные продольные колебания вязкоупругого стержня в модели Кельвина, уравнений движения несжимаемой вязкой теплопроводной жидкости с согласованными аномальными зависимостями коэффициента вязкости и коэффициента удельной теплоемкости от температуры. Найдены все эволюционные симметрические t-гиперболические по Фридрихсу системы, равносильные системам двумерных и трехмерных волновых уравнений. Получены новые подмодели газовой динамики: инвариантные, частично инвариантные, дифференциально-инвариантные; исследован их физический смысл.
Монография предназначена математикам, механикам и физикам, интересующимся вопросами симметрийного анализа уравнений механики сплошной среды.